- 2021-04-28 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019届二轮复习椭圆、双曲线与抛物线的方程及几何性质学案(全国通用)
2019届二轮复习 椭圆、双曲线与抛物线的方程及几何性质 学案 (全国通用) 【考点剖析】 1.命题方向预测: (1)高考对椭圆的考查,主要考查以下几个方面:一是考查椭圆的定义,与椭圆的焦点三角形结合,解决椭圆、三角形等相关问题;二是考查椭圆的标准方程,结合椭圆的基本量之间的关系,利用待定系数法求解;三是考查椭圆的几何性质,较多地考查离心率问题;四是考查直线与椭圆的位置关系问题,综合性较强,往往与向量结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题、不等式等. (2)高考对双曲线的考查,主要考查以下几个方面:一是考查双曲线的标准方程,结合双曲线的定义及双曲线基本量之间的关系,利用待定系数法求解;二是考查双曲线的几何性质,较多地考查离心率、渐近线问题;三是考查双曲线与圆、椭圆或抛物线相结合的问题,综合性较强. (3)高考对抛物线的考查,主要考查以下几个方面:一是考查抛物线的标准方程,结合抛物线的定义及抛物线的焦点,利用待定系数法求解;二是考查抛物线的几何性质,较多地涉及准线、焦点、焦准距等;三是考查直线与抛物线的位置关系问题,过焦点的直线较多. 选择题或填空题抛物线与椭圆、双曲线综合趋势较强,涉及直线与抛物线位置关系的解答题增多. 2.课本结论总结: 1.椭圆的概念 (1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点 ,两焦点间的距离叫做焦距. (2)代数式形式:集合 ①若,则集合P为椭圆; ②若,则集合P为线段; ③若,则集合P为空集. 2.椭圆的标准方程及其几何性质 条件 图形 标准方程 范围 对称性 曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点 长轴顶点 ,轴顶点 焦点 焦距 离心率 ,其中 通径 过焦点垂直于长轴的弦叫通径,其长为 3.双曲线的定义 满足以下三个条件的点的轨迹是双曲线 (1)在平面内; (2)动点到两定点的距离的差的绝对值为一定值; (3)这一定值一定要小于两定点的距离. 4. 双曲线的几何性质 标准方程 -=1 (a>0,b>0) -=1(a>0,b>0) 图形 性质 范围 学 ] x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性 对称轴:坐标轴 对称中心:原点 顶点 A1(-a,0),A2(a,0) A1(0,-a),A2(0,a) 渐近线 y=±x y=±x 离心率 e=,e∈(1,+∞),其中c= 实虚轴 线段A1A2叫作双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫作双曲线的虚轴,它的长|B1B2|=2b;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长. a、b、c 的关系 c2=a2+b2(c>a>0,c>b>0) 5.抛物线方程及其几何性质 图形 标准方程 y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) 顶点 O(0,0) 范围 x≥0, x≤0, y≥0, y≤0, 对称轴 x轴 y轴 焦点 离心率 e=1 准线方程 焦半径 3.名师二级结论: 椭圆: 一条规律 椭圆焦点位置与x2,y2系数间的关系: 给出椭圆方程+=1时,椭圆的焦点在x轴上m>n>0;椭圆的焦点在y轴上0<m<n. 两种方法 (1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程. (2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程. 三种技巧 (1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c. (2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1). (3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴. 双曲线: 一条规律 双曲线为等轴双曲线⇔双曲线的离心率e=⇔双曲线的两条渐近线互相垂直(位置关系). 两种方法 (1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a、2b或2c,从而求出a2、b2,写出双曲线方程. (2)待定系数法:先确定焦点是在x轴上还是在y轴上,设出标准方程,再由条件确定a2、b2的值,即“先定型,再定量”;如果焦点位置不好确定,可将双曲线方程设为-=λ(λ≠0),再根据条件求λ的值. 三个防范 (1)区分双曲线中的a,b,c大小关系与椭圆a,b,c关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2. (2)双曲线的离心率大于1,而椭圆的离心率e∈(0,1). 双曲线的标准方程中,对a、b的要求只是a>0,b>0易误认为与椭圆标准方程中a,b的要求相同. 若a>b>0,则双曲线的离心率e∈(1,); 若a=b>0,则双曲线的离心率e=; 若0<a<b,则双曲线的离心率e>. (3)双曲线-=1(a>0,b>0)的渐近线方程是y=±x, -=1(a>0,b>0)的渐近线方程是y=±x. 抛物线: 一个结论 焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F的距离|PF|=x0+. 两种方法 (1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程. (2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0). 4.考点交汇展示: (1)与数列交汇 【2018届云南省师范大学附属中学高三月考二】点在椭圆上,是椭圆的两个焦点,,且的三条边,,成等差数列,则此椭圆的离心率是( ) A. B. C. D. 【答案】D 【解析】设,由椭圆的定义得:,∵的三条边 成等差数列,∴,联立,,解得 ,由余弦定理得:,将 代入可得, ,整理得:,由,得,解得:或(舍去),故选D. (2)与导函数及其应用交汇 在直角坐标系中,曲线C:y=与直线(>0)交与M,N两点, (Ⅰ)当k=0时,分别求C在点M和N处的切线方程; (Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由. 【答案】(Ⅰ)或(Ⅱ)存在 (Ⅱ)存在符合题意的点,证明如下: 设P(0,b)为复合题意得点,,,直线PM,PN的斜率分别为. 将代入C得方程整理得. ∴. ∴==. 当时,有=0,则直线PM的倾斜角与直线PN的倾斜角互补, 故∠OPM=∠OPN,所以符合题意. ……12分 (3)与解三角形交汇 【2018年理数全国卷II】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为 A. B. C. D. 【答案】D (4)与平面向量交汇 【2018年理新课标I卷】设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则= A. 5 B. 6 C. 7 D. 8 【答案】D 【解析】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D. 【考点分类】 考向一 椭圆的标准方程及其几何性质 1. 【2016高考新课标1文数】直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( ) (A) (B) (C) (D) 【答案】B 【解析】如图,由题意得在椭圆中, 在中,,且,代入解得 ,所以椭圆得离心率得,故选B. y x O B F D 2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大. 【答案】5 【方法总结】 1.椭圆的几何性质常涉及一些不等关系,例如对椭圆,有-a≤x≤a,-b≤y≤b,0查看更多