- 2021-04-27 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
苏州中考数学试题答案
2013年苏州市初中毕业暨升学考试试卷 数 学 一、选择题:本大题共有10小题,每小题3分,共30分. 1.等于 A.2 B.-2 C.±2 D.± 2.计算-2x2+3x2的结果为 A.-5x2 B.5x2 C.-x2 D.x2 3.若式子在实数范围内有意义,则x的取值范围是 A.x>1 B.x<1 C.x≥1 D.x≤1 4.一组数据:0,1,2,3,3,5,5,10的中位数是 A.2.5 B.3 C.3.5 D.5 5.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为 A.5 B.6 C.7 D.8 6.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是 A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3 7.如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于 A.55° B.60° C.65° D.70° [来源:学科网] 8.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为 A.12 B.20 C.24 D.32 9.已知x-=3,则4-x2+x的值为 A.1 B. C. D. 10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为 A. B. C. D.2 二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上. 11.计算:a4÷a2= . 12.因式分解:a2+2a+1= . 13.方程的解为 . 14.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为 . 15.按照下图所示的操作步骤,若输入x的值为2,则输出的值为 . 16.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为 .(结果保留π) 17.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且OQ=OC,连接CQ并延长CQ交边AB于点P,则点P的坐标为( , ). 18.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则 (用含k的代数式表示). 三、解答题:本大题共11小题,共76分. 19.(本题满分5分) 计算:. 20.(本题满分5分) 解不等式组: 21.(本题满分5分) 先化简,再求值:,其中x=-2. 22.(本题满分6分)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人? 23.(本题满分6分)某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图: (1)求这次抽样调查的样本容量,并补全图①; (2)如果测试成绩(等级)为A,B,C级的定为优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数. (图②) [来源:学,科,网] 24.(本题满分7分)如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上. (1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是 (只需要填一个三角形); (2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解). [来源:Z,xx,k.Com] 25.(本题满分7分)如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向. (1)求点P到海岸线l的距离; (2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处.此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离. (上述2小题的结果都保留根号) 26.(本题满分8分)如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G. (1)求证:△APB≌△APD; (2)已知DF:FA=1:2,设线段DP的长为x,线段PF的长为y. ①求y与x的函数关系式; ②当x=6时,求线段FG的长. 27.(本题满分8分)如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F. (1)求证:BD=BF; (2)若CF=1,cosB=,求⊙O的半径. 28.(本题满分9分)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s). (1)当t= s时,四边形EBFB'为正方形; (2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值; (3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由. 29.(本题满分10分)如图,已知抛物线y=x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0). (1)b= ,点B的横坐标为 (上述结果均用含c的代数式表示); (2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+bx+c交于点E.点D是x轴上一点,其坐标为(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S. ①求S的取值范围; ②若△PBC的面积S为整数,则这样的△PBC共有 个.查看更多