- 2021-04-27 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考指数对数及例题
龙文学校个性化辅导教案提纲 教师: 学生: 时间: 年_ 月 日 段 授课目的与考点分析: 指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题. 一、分数指数与根式 1、两组常用等式: 当()为奇数时,=; 当()为正偶数时,= 2、正数的分数指数幂的意义: 当,、,且时,;,。 3、幂的运算法则: 若、,,,则 ;;;。 二、对数: 1、定义:如果(且),那么就叫做以为底N的对数,记作(且) 2、对数恒等式: (且,); (且)。 3、对数性质: 负数和零没有对数;1的对数是零,底的对数是1;即,。 4、对数运算法则: 若且,,则 ; ; ; 。 5、换底公式:(且,且,) 6、特殊对数: 以为底的对数,叫做自然对数,记作。 以10为底的对数,叫做常用对数,记作。 7、常用公式: ①; ②; ③; ④。 三、指数函数与对数函数 名称 指数函数 对数函数 一般形式 图象 定义域 值域 函数值变化情况 当时, 当时, 当时, 当时, 单调性 当时,是增函数; 当时,是减函数。 当时,是增函数; 当时,是减函数。 的图象与的图象关于直线对称。 例1:已知定义域为R的函数是奇函数。(Ⅰ)求的值; (Ⅱ)若对任意的,不等式恒成立,求k的取值范围; 解析:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,即 又由f(1)= -f(-1)知 (Ⅱ)解法一:由(Ⅰ)知, 易知f(x)在上为减函数。又因f(x)是奇函数,从而不等式: 等价于, 因为减函数,由上式推得:.即对一切有:, 从而判别式 解法二:由(Ⅰ)知.又由题设条件得: , 即 :, 整理得 上式对一切均成立, 从而判别式 例2:定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y). (1)求证f(x)为奇函数; (2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围. 解: (1)证明:f(x+y)=f(x)+f(y)(x,y∈R), ① 令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0. 令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0, 则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立, 所以f(x)是奇函数. (2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数, 又由(1)f(x)是奇函数.f(k·3)<-f(3-9-2)=f(-3+9+2), ∴ k·3<-3+9+2,3-(1+k)·3+2>0对任意x∈R成立. 令t=3>0,问题等价于t-(1+k)t+2>0 对任意t>0恒成立. R恒成立. 四、本次课后作业: 五、学生对于本次课的评价: ○特别满意 ○满意 ○一般 ○差 六、教师评定 1.学生上次作业评价: ○好 ○较好 ○一般 ○差 2.学生本次上课情况评价: ○好 ○较好 ○一般 ○差 学生签字: 龙文学校教务处签字:查看更多