- 2021-04-26 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
湖南省邵阳市隆回县万和实验学校高中物理 第四章 电磁感应 单元过关测试题 新人教版选修3-2
2020年下学期隆回县万和实验学校高二物理电磁感应单元过关测试题 1.[2020·新课标全国卷Ⅰ] 在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( ) A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化 1.D 产生感应电流的条件是:只要穿过闭合电路的磁通量发生变化,电路中就会产生感应电流.本题中的A、B选项都不会使电路中的磁通量发生变化,不满足产生感应电流的条件,故不正确.C选项虽然在插入条形磁铁瞬间电路中的磁通量发生变化,但是当人到相邻房间时,电路已达到稳定状态,电路中的磁通量不再发生变化,故观察不到感应电流.在给线圈通电、断电瞬间,会引起闭合电路磁通量的变化,产生感应电流,因此D选项正确. 2.如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。则磁场() (A)逐渐增强,方向向外 (B)逐渐增强,方向向里 (C)逐渐减弱,方向向外 (D)逐渐减弱,方向向里 17.CD [解析] 本题考查了楞次定律,感应电流的磁场方向总是阻碍引起闭合回路中磁通量的变化,体现在面积上是“增缩减扩”,而回路变为圆形,面积是增加了,说明磁场是在逐渐减弱.因不知回路中电流方向,故无法判定磁场方向,故CD都有可能。 3. [2020·全国卷] 很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变 20.C [解析] 本题考查楞次定律、法拉第电磁感应定律.竖直圆筒相当于闭合电路,磁铁穿过闭合电路,产生感应电流,根据楞次定律,磁铁受到向上的阻碍磁铁运动的安培力,开始时磁铁的速度小,产生的感应电流也小,安培力也小,磁铁加速运动,随着速度的增大,产生的感应电流增大,安培力也增大,直到安培力等于重力的时候,磁铁匀速运动.所以C正确. 4. [2020·广东卷] 如图8所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块( ) A.在P和Q中都做自由落体运动 B.在两个下落过程中的机械能都守恒 C.在P中的下落时间比在Q中的长 D.落至底部时在P中的速度比在Q中的大 15.C [解析] 磁块在铜管中运动时,铜管中产生感应电流,根据楞次定律,磁块会受到向上的磁场力,因此磁块下落的加速度小于重力加速度,且机械能不守恒,选项A、B错误;磁块在塑料管中运动时,只受重力的作用,做自由落体运动,机械能守恒,磁块落至底部时,根据直线运动规律和功能关系,磁块在P中的下落时间比在Q中的长,落至底部时在P中的速度比在Q中的小,选项C正确,选项D错误. 5.[2020·江苏卷] 如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( ) A.增加线圈的匝数 B.提高交流电源的频率 C.将金属杯换为瓷杯 D.取走线圈中的铁芯 7.AB [解析] 根据法拉第电磁感应定律E=n知,增加线圈的匝数n,提高交流电源的频率即缩短交流电源的周期(相当于减小Δt),这两种方法都能使感应电动势增大故选项A、B正确.将金属杯换为瓷杯,则没有闭合电路,也就没有感应电流;取走线圈中的铁芯,则使线圈中的磁场大大减弱,则磁通量的变化率减小.感应电动势减小.故选项C、D错误. 6.[2020·安徽卷] 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q的小球.已知磁感应强度B随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是( ) A.0 B.r2qk C.2πr2qk D.πr2qk 20.D [解析] 本题考查电磁感应、动能定理等知识点,考查对“变化的磁场产生电场”的理解能力与推理能力.由法拉第电磁感应定律可知,沿圆环一周的感生电动势E感==·S=k·πr2,电荷环绕一周,受环形电场的加速作用,应用动能定理可得W=qE感=πr2qk.选项D正确。 b R a F B 7.如图所示,置于水平面的平行金属导轨不光滑,导轨一端连接电阻R,其它电阻不计,垂直于导轨平面有一匀强磁场,磁感应强度为B,当一质量为m的金属棒ab在水平恒力F作用下由静止向右滑动时( ) A.外力F对ab棒做的功等于电路中产生的电能 B.只有在棒ab做匀速运动时,外力F做的功才等于电路中产生的电能 C.无论棒ab做何种运动,它克服安培力做的功一定等于电路中产生的电能 D.棒ab匀速运动的速度越大,F力做功转化为电能的效率越高 i i T T/2 O i0 -i0 甲 乙 8.如图甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i 随时间t的变化关系如图乙所示.在0-T/2时间内,直导线中电流向上,则在T/2-T时间内,线框中感应电流的方向与所受安培力情况是( ) A.感应电流方向为顺时针,线框受安培力的合力方向向左 t B.感应电流方向为逆时针,线框受安培力的合力方向向右 C.感应电流方向为顺时针,线框受安培力的合力方向向右 D.感应电流方向为逆时针,线框受安培力的合力方向向左 9.[2020·新课标全国卷Ⅰ] 如图(a)所示,线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( ) 18.C [解析] 本题考查了电磁感应的图像.根据法拉第电磁感应定律,ab线圈电流的变化率与线圈cd上的波形图一致,线圈cd上的波形图是方波,ab 线圈电流只能是线性变化的,所以C正确. 10.如图所示,在匀强磁场中放有电阻不计的平行铜导轨,它与大线圈M相连接.要使小线圈N受到的磁场力向里,则放在导轨上的裸金属棒ab的运动情况是( ) a N M B b A.向右匀速运动 B.向左加速运动 C.向右减速运动 D.向右加速运动 11、[2020·江苏卷] 如图所示,一正方形线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt时间内,磁感应强度的方向不变,大小由B均匀地增大到2B.在此过程中,线圈中产生的感应电动势为( ) A. B. C. D. 1.B [解析] 根据法拉第电磁感应定律知E=n=n,这里的S指的是线圈在磁场中的有效面积,即S=,故E=n=,因此B项正确. 12.[2020·山东卷] 如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用FM、FN表示.不计轨道电阻.以下叙述正确的是( ) A.FM向右 B.FN向左 C.FM逐渐增大 D.FN逐渐减小 16.BCD [解析] 根据安培定则可判断出,通电导线在M区产生竖直向上的磁场,在N区产生竖直向下的磁场.当导体棒匀速通过M区时,由楞次定律可知导体棒受到的安培力向左.当导体棒匀速通过N区时,由楞次定律可知导体棒受到的安培力也向左.选项B正确.设导体棒的电阻为r,轨道的宽度为L,导体棒产生的感应电流为I′,则导体棒受到的安培力F安=BI′L=BL=,在导体棒从左到右匀速通过M区时,磁场由弱到强,所以FM逐渐增大;在导体棒从左到右匀速通过N 区时,磁场由强到弱,所以FN逐渐减小.选项C、D正确. 13.[2020·四川卷] 如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为0.2 kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4-0.2t) T,图示磁场方向为正方向.框、挡板和杆不计形变.则( ) A.t=1 s时,金属杆中感应电流方向从C到D B.t=3 s时,金属杆中感应电流方向从D到C C.t=1 s时,金属杆对挡板P的压力大小为0.1 N D.t=3 s时,金属杆对挡板H的压力大小为0.2 N 6.AC [解析] 由于B=(0.4-0.2 t) T,在t=1 s时穿过平面的磁通量向下并减少,则根据楞次定律可以判断,金属杆中感应电流方向从C到D,A正确.在t=3 s时穿过平面的磁通量向上并增加,则根据楞次定律可以判断,金属杆中感应电流方向仍然是从C到D,B错误.由法拉第电磁感应定律得E==Ssin 30°=0.1 V,由闭合电路的欧姆定律得电路电流I==1 A,在t=1 s时,B=0.2 T,方向斜向下,电流方向从C到D,金属杆对挡板P的压力水平向右,大小为FP=BILsin 30°=0.1 N,C正确.同理,在t=3 s时,金属杆对挡板H的压力水平向左,大小为FH=BILsin 30°=0.1 N,D错误. 14、如图,足够长的U型光滑金属导轨平面与水平面成角(0<<90°),其中MN平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。金属棒由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,棒接入电路的电阻为R,当流过棒某一横截面的电量为q时,它的速度大小为,则金属棒在这一过程中( ) A.F运动的平均速度大小为 B.平滑位移大小为 C.产生的焦尔热为 D.受到的最大安培力大小为 15、如图,EOF和为空间一匀强磁场的边界,其中EO∥,FO∥,且EO⊥OF;为∠EOF的角平分线,间的距离为l;磁场方向垂直于纸面向里。一边长为l的正方形导线框沿方向匀速通过磁场,t=0时刻恰好位于图示位置。规定导线框中感应电流沿逆时针方向时为正,则感应电流i与实践t的关系图线可能正确的是 ( ) 16、如图甲所示,两固定的竖直光滑金属导轨足够长且电阻不计。两质量、长度均相同的导体棒、,置于边界水平的匀强磁场上方同一高度处。磁场宽为3,方向与导轨平面垂直。先由静止释放,刚进入磁场即匀速运动,此时再由静止释放,两导体棒与导轨始终保持良好接触。用表示的加速度,表示的动能,、分别表示、相对释放点的位移。图乙中正确的是( ) 二、填空实验题(本大题共3个小题,11小题5分,12小题5分,13小题12分,共22分) 17.如图所示,电子射线管(A为其阴极),放在蹄形磁轶的N、S两极间,射线管的AB两极A端接在直流高压电源的 极。此时,荧光屏上的电子束运动径迹 偏转。(填“向上”、“向下”“不”)。 18.如图所示,Ⅰ和Ⅱ是一对异名磁极,ab为放在其间的金属棒。ab和cd用导线连成一个闭合回路。当ab棒向左运动时,cd导线受到向下的磁场力。由此可知Ⅰ是______极, a、b、c、d四点的电势由高到低依次排列的顺序是_ __。 19.如图所示是“研究电磁感应现象”的实验装置。 (1)将图中所缺导线补接完整。 (2)如果在闭合电键时发现灵敏电流计的指针向右偏了一下,那么合上电键后,将原线圈迅速插入副线圈时,电流计指针___ ______; 原线圈插入副线圈后,将滑动变阻器滑片迅速向左移动时,电流计指针____________。 三、计算题(要求写出必要的文字说明和演算步骤,只写答案的不能得分, 每小题12分,共48分) 14.如图所示,设匀强磁场的磁感应强度B为0.10 T,切割磁感线的导线的长度L为40 cm,线框向左匀速运动的速度v为5.0 m/s,整个线框的电阻R为0.50 Ω,试求: (1)感应电动势的大小; (2)感应电流的大小; (3)使线框向左匀速运动所需要的外力. 24. [2020·浙江卷] 某同学设计一个发电测速装置,工作原理如图所示.一个半径为R=0.1 m的圆形金属导轨固定在竖直平面上,一根长为R的金属棒OA,A端与导轨接触良好,O端固定在圆心处的转轴上.转轴的左端有一个半径为r=的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m=0.5 kg的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B=0.5 T.a点与导轨相连,b点通过电刷与O端相连.测量a、b两点间的电势差U可算得铝块速度.铝块由静止释放,下落h=0.3 m时,测得U=0.15 V.(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g取10 m/s2) 第24题图 (1)测U时,与a点相接的是电压表的“正极”还是“负极”? (2)求此时铝块的速度大小; (3)求此下落过程中铝块机械能的损失. 24.[答案] (1)正极 (2)2 m/s (3)0.5 J [解析] 本题考查法拉第电磁感应定律、右手定则等知识和分析综合及建模能力. (1)正极 (2)由电磁感应定律得U=E= ΔΦ=BR2Δθ U=BωR2 v=rω=ωR 所以v==2 m/s (3)ΔE=mgh-mv2 ΔE=0.5 J 13.[2020·江苏卷] 如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直.质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g.求: (1)导体棒与涂层间的动摩擦因数μ; (2)导体棒匀速运动的速度大小v; (3)整个运动过程中,电阻产生的焦耳热Q. 13.[答案] (1)tan θ (2) (3)2mgdsin θ- [解析] (1)在绝缘涂层上 受力平衡 mgsin θ=μmgcos θ 解得 μ=tan θ. (2)在光滑导轨上 感应电动势 E=Blv 感应电流 I= 安培力 F安=BLI 受力平衡 F 安=mgsin θ 解得 v= (3)摩擦生热 QT=μmgdcos θ 能量守恒定律 3mgdsin θ=Q+QT+mv2 解得 Q=2mgdsin θ-. 11.[2020·天津卷] 如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B=0.5 T.在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑.cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2,问 (1)cd下滑的过程中,ab中的电流方向; (2)ab刚要向上滑动时,cd的速度v多大; (3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab上产生的热量Q是多少? 11.(1)由a流向b (2)5 m/s (3)1.3 J [解析] (1)由右手定则可以直接判断出电流是由a流向b. (2)开始放置ab刚好不下滑时,ab所受摩擦力为最大静摩擦力,设其为Fmax,有 Fmax=m1gsin θ① 设ab刚好要上滑时,cd棒的感应电动势为E,由法拉第电磁感应定律有 E=BLv② 设电路中的感应电流为I,由闭合电路欧姆定律有 I=③ 设ab所受安培力为F安,有 F安=ILB④ 此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有 F安=m1gsin θ+Fmax⑤ 综合①②③④⑤式,代入数据解得 v=5 m/s⑥ (3)设cd棒的运动过程中电路中产生的总热量为Q总,由能量守恒有 m2gxsin θ=Q总+m2v2⑦ 又 Q=Q总⑧ 解得Q=1.3 J 23.[2020·安徽卷] (16分)如图1所示,匀强磁场的磁感应强度B为0.5 T,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“A”形状的光滑金属导轨的MPN(电阻忽略不计),MP和NP长度均为2.5 m,MN连线水平,长为3 m.以MN中点O为原点、OP为x轴建立一维坐标系Ox.一根粗细均匀的金属杆CD,长度d为3 m,质量m为1 kg、电阻R为0.3 Ω,在拉力F的作用下,从MN处以恒定速度v=1 m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好).g取10 m/s2. 图1 图2 (1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8 m处电势差UCD; (2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出Fx关系图像; (3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热. 23.[答案] (1)-0.6 V (2)略 (3)7.5 J [解析] (1)金属杆CD在匀速运动中产生的感应电动势 E=Blv(l=d),E=1.5 V(D点电势高) 当x=0.8 m时,金属杆在导轨间的电势差为零.设此时杆在导轨外的长度为l外,则 l外=d-d OP= 得l外=1.2 m 由楞次定律判断D点电势高,故CD两端电势差 UCB=-Bl外v, UCD=-0.6 V (2)杆在导轨间的长度l与位置x关系是 l=d=3-x 对应的电阻R1为R1=R,电流I= 杆受的安培力F安=BIl=7.5-3.75x 根据平衡条件得F=F安+mgsin θ F=12.5-3.75x(0≤x≤2) 画出的Fx图像如图所示. (3)外力F所做的功WF等于Fx图线下所围的面积,即 WF=×2 J=17.5 J 而杆的重力势能增加量ΔEp=mgsin θ 故全过程产生的焦耳热Q=WF-ΔEp=7.5 J 查看更多