- 2021-04-25 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国高考文科数学试题及答案广东卷2
2012年普通高等学校招生全国统一考试(广东卷) 数学(文科) 本试题共4页,21小题,满分150分,考试用时120分钟。 参考公式: 锥体的体积公式,其中为柱体的底面积,为柱体的高. 球的体积,其中为球的半径。 一组数据的标准差,其中表示这组数据的平均数。 一、选择题:本大题共10小题,每小题5分,满分40分,在每小题给出四个选项中,只有一项符合题目要求。 1. 设为虚数单位,则复数=( ) 2.设集合;则( ) 3. 若向量;则( ) 4. 下列函数为偶函数的是( ) 5. 已知变量满足约束条件,则的最小值为( ) 6. 在中,若,则( ) 7.某几何体的三视图如图1所示,它的体积为( ) 8. 在平面直角坐标系中,直线与圆相交于两点,则弦的长等于( ) 9. 执行如下图所示的程序框图,若输入的值为6,则输出的值为( ) 10.对任意两个非零的平面向量和,定义;若两个非零的平面向量满足,与的夹角,且都在集合中,则( ) 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。 (一)必做题(11-13题) 11. 函数的定义域为_________。 12. 等比数列满足,则。 13. 由正整数组成的一组数据,其平均数和中位数都是,且标准差等于,则这组数据为_________。 (从小到大排列) (二)选做题(14 - 15题,考生只能从中选做一题) 14. (坐标系与参数方程选做题) 在平面直角坐标系中,曲线和的参数方程分别为 (是参数,)和(是参数),它们的交点坐标为_______. 15.(几何证明选讲选做题)如图所示,直线与圆想切于点,是弦上的点,,若,则_______。 三、解答题:本大题共6小题,满分80分。解答需写出文字说明、证明过程和演算步骤。 (本小题满分12分)已知函数,且。 (1)求的值;(2)设,;求的值 17.(本小题满分13分)某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是: [50,60][60,70][70,80][80,90][90,100]。 (1)求图中的值; (2)根据频率分布直方图,估计这100名学生语文成绩的平均分; (3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数。 18.(本小题满分13分)如下图5所示,在四棱锥中,平面,,是中点,是上的点,且,为中边上的高。 (1)证明:平面; (2)若,求三棱锥的体积; (3)证明:平面. 19.(本小题满分14分)设数列的前项和为,数列的前项和为,满足. (1)求的值;(2)求数列的通项公式。 20.(本小题满分14分)在平面直角坐标系中,已知椭圆的左焦点为, 且点在上。(1)求的方程;(2)设直线同时与椭圆和抛物线相切,求直线的方程。 21.(本小题满分14分)设,集合,, 。(1)求集合(用区间表示);(2)求函数在内的极值点。 2012年普通高等学校招生全国统一考试(广东卷) 数学(文科)参考答案 一、选择题:本大题共10小题,每小题5分,满分40分。 1 2 3 4 5 6 7 8 9 10 D A A D C B C B C A 1. 【解析】选 依题意: 2.【解析】选 3. 【解析】选 4. 【解析】选 与是奇函数,,是非奇非偶函数 5. 【解析】选 约束条件对应边际及内的区域:,则 6. 【解析】选 由正弦定理得: 7.【解析】选 几何体是半球与圆锥叠加而成,它的体积为 8. 【解析】选 圆的圆心到直线的距离,弦的长 9. 【解析】选 10. 【解析】选 都在集合中得:。 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。 (一)必做题(11-13题) 9. 【解析】定义域为,中的满足:或 10. 【解析】, 11. 【解析】这组数据为,不妨设得: ①如果有一个数为或;则其余数为,不合题意;②只能取;得:这组数据为 (二)选做题(14 - 15题,考生只能从中选做一题) 14.【解析】它们的交点坐标为, 解得:交点坐标为 15.【解析】,得: 。 三、解答题:本大题共6小题,满分80分。解答需写出文字说明、证明过程和演算步骤。 16.解:(1)。 (2),,。 ,,, 17.解:(1)。 (2)平均分为。 (3)数学成绩在内的人数为人,数学成绩在外的人数为人。 答:(1);(2)这100名学生语文成绩的平均分为;(3)数学成绩在外的人数为人。 18.(1)证明:平面,面,又平面, 平面。 (2)是中点点到面的距离, 三棱锥的体积。 (3)取的中点为,连接。 ,又平面,平面平面平面, 又平面平面,平面面, 点是棱的中点,又,得:平面。 19.解:(1)在中,令。 (2),相减得:,, 相减得:,,,得, ,得:数列是以为首项,为公比的等比数列, 。 20.解:(1)由题意得:,故椭圆的方程为:。 (2)①当直线的斜率不存在时,设直线,直线与椭圆相切,直线与抛物线相切,得:不存在。 ②当直线的斜率存在时,设直线,直线与椭圆相切两根相等;直线与抛物线相切两根相等 ,解得:或。 21.解:(1)对于方程,判别式。 因为,所以。 当时,,此时,所以; 当时,,此时,所以; 当时,,设方程的两根为且, 则,, ,,所以,此时, 综上可知,当时,; 当时,;当时,。 (2),由, 由或,所以函数在区间和上为递增,在区间上为递减。 当时,因为,所以在内有极大值点和极小值点; 当时,,所以在内有极大值点; 当时, ,在内有极大值点。 综上可知:当时,在内有极大值点;当时,在内有极大值点和极小值点。查看更多