- 2021-04-22 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习(理)通用版11-5离散型随机变量的分布列、均值与方差作业
课时跟踪检测(六十五) 离散型随机变量的分布列、均值与方差 1.(2019·嘉兴一中质检)随机变量X的分布列如下表,且E(X)=2,则D(2X-3)=( ) X 0 2 a P p A.2 B.3 C.4 D.5 解析:选C 因为p=1--=, 所以E(X)=0×+2×+a×=2,解得a=3, 所以D(X)=(0-2)2×+(2-2)2×+(3-2)2×=1,所以D(2X-3)=22D(X)=4,故选C. 2.(2019·广雅中学期中)口袋中有5个形状和大小完全相同的小球,编号分别为0,1,2,3,4,从中任取3个球,以X表示取出球的最小号码,则E(X)=( ) A.0.45 B.0.5 C.0.55 D.0.6 解析:选B 易知随机变量X的取值为0,1,2,由古典概型的概率计算公式得P(X=0)==0.6,P(X=1)==0.3,P(X=2)==0.1.所以E(X)=0×0.6+1×0.3+2×0.1=0.5,故选B. 3.(2019·衡水中学月考)已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为ξ,则E(ξ)=( ) A.3 B. C. D.4 解析:选B 由题意知,ξ的所有可能取值为2,3,4,其概率分别为P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,所以E(ξ)=2×+3×+4×=.故选B. 4.某学校为了给运动会选拔志愿者,组委会举办了一个趣味答题活动.参选的志愿者回答三个问题,其中两个是判断题,另一个是有三个选项的单项选择题,设ξ为回答正确的题数,则随机变量ξ的数学期望E(ξ)=( ) A.1 B. C. D.2 解析:选B 由已知得ξ的可能取值为0,1,2,3. P(ξ=0)=××=,P(ξ=1)=××+××+××=,P(ξ=2)=××+××+××=,P(ξ=3)=××=.∴E(ξ)=0×+1×+2×+3×=. 5.(2019·天津一中月考)甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止,设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E(ξ)为( ) A. B. C. D. 解析:选B 由已知,ξ的可能取值是2,4,6.设每两局比赛为一轮,则该轮比赛停止的概率为2+2=. 若该轮结束时比赛还要继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下一轮比赛是否停止没有影响. 所以P(ξ=2)=,P(ξ=4)=×=,P(ξ=6)=2=,所以E(ξ)=2×+4×+6×=.故选B. 6.(2019·南安一中期中)设10≤x1<x2<x3<x4≤104,x5=105.随机变量ξ1取值x1,x2,x3,x4,x5的概率均为0.2,随机变量ξ2取值,,,,的概率也为0.2.若记D(ξ1),D(ξ2)分别为ξ1,ξ2的方差,则( ) A.D(ξ1)>D(ξ2) B.D(ξ1)=D(ξ2) C.D(ξ1)<D(ξ2) D.D(ξ1)与D(ξ2)的大小关系与x1,x2,x3,x4的取值有关 解析:选A 由题意可知E(ξ1)=(x1+x2+x3+x4+x5), E(ξ2)==(x1+x2+x3+x4+x5),期望相等,都设为m, ∴D(ξ1)=[(x1-m)2+…+(x5-m)2], D(ξ2)=, ∵10≤x1<x2<x3<x4≤104,x5=105, ∴D(ξ1)>D(ξ2).故选A. 7.(2019·湖南名校联考)体育课的排球发球项目考试的规则:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p,发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是( ) A. B. C. D. 解析:选C 根据题意,发球次数为1即第一次发球成功,故P(X=1)=p,发球次数为2即第一次发球失败,第二次发球成功,故P(X=2)=p(1-p), 发球次数为3即第一次、第二次发球失败,故P(X=3)=(1-p)2,则E(X)=p+2p(1-p)+3(1-p)2=p2-3p+3, 依题意有E(X)>1.75,则p2-3p+3>1.75,解得p>或p<, 结合p的实际意义,可得0<p<,即p∈,故选C. 8.(2018·浙江高考)设0<p<1,随机变量ξ的分布列是 ξ 0 1 2 P 则当p在(0,1)内增大时,( ) A.D(ξ)减小 B.D(ξ)增大 C.D(ξ)先减小后增大 D.D(ξ)先增大后减小 解析:选D 由题意知E(ξ)=0×+1×+2×=p+, D(ξ)=2×+2×+2× =2×+2×+2× =-p2+p+=-2+, ∴D(ξ)在上递增,在上递减,即当p在(0,1)内增大时,D(ξ)先增大后减小. 9.(2019·鄂南高中期中)设随机变量X的概率分布列为 X 1 2 3 4 P m 则P(|X-3|=1)=________. 解析:由+m++=1,解得m=,P(|X-3|=1)=P(X=2)+P(X=4)=+=. 答案: 10.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率; (2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E(ξ),方差D(ξ). 解:(1)两人所付费用相同,相同的费用可能为0,40,80元,两人都付0元的概率为P1=×=, 两人都付40元的概率为P2=×=, 两人都付80元的概率为 P3=×=×=, 故两人所付费用相同的概率为P=P1+P2+P3=++=. (2)由题设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160,则: P(ξ=0)=×=, P(ξ=40)=×+×=, P(ξ=80)=×+×+×=, P(ξ=120)=×+×=, P(ξ=160)=×=. ξ的分布列为: ξ 0 40 80 120 160 P E(ξ)=0×+40×+80×+120×+160×=80. D(ξ)=(0-80)2×+(40-80)2×+(80-80)2×+(120-80)2×+(160-80)2×=. 11.(2019·大连期中)某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的单价进行试销,得到一组检测数据(xi,yi)(i=1,2,…,6)如表所示. 试销单价x/元 4 5 6 7 a 9 产品销量y/件 b 84 83 80 75 68 已知变量x,y具有线性负相关关系,且i=39,i=480,现有甲、乙、丙三位同学通过计算求得其回归方程分别为:甲,y=4x+54;乙,y=-4x+106;丙,y=-4.2x+105.其中有且仅有一位同学的计算结果是正确的. (1)试判断谁的计算结果正确,并求出a,b的值; (2)若由线性回归方程得到的估计数据(xi,i)中的i与检测数据(xi,yi)中的yi差的绝对值不超过1,则称该检测数据是“理想数据”,现从检测数据中随机抽取3个,求“理想数据”的个数ξ的分布列和数学期望. 解:(1)已知变量x,y具有线性负相关关系,故甲的计算结果不对,由题意得,==6.5,==80, 将=6.5,=80分别代入乙、丙的回归方程,经验证知乙的计算结果正确, 故回归方程为y=-4x+106. 由i=4+5+6+7+a+9=39,得a=8, 由i=b+84+83+80+75+68=480,得b=90. (2)列出估计数据(xi,yi)与检测数据(xi,yi)如表. x 4 5 6 7 8 9 y 90 84 83 80 75 68 90 86 82 78 74 70 易知有3个“理想数据”,故“理想数据”的个数ξ的所有可能取值为0,1,2,3. P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.故ξ的分布列为 ξ 0 1 2 3 P E(ξ)=0×+1×+2×+3×=. 12.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司,底薪80元,每单送餐员抽成4元;乙公司,无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超出40单的部分送餐员每单抽成7元.假设同一公司的送餐员一天的送餐单数相同,现从这两家公司各随机选取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表: 甲公司送餐员送餐单数频数表 送餐单数 38 39 40 41 42 天数 10 15 10 10 5 乙公司送餐员送餐单数频数表 送餐单数 38 39 40 41 42 天数 5 10 10 20 5 (1)现从记录甲公司的50天送餐单数中随机抽取3天的送餐单数,求这3天送餐单数都不小于40的概率. (2)若将频率视为概率,回答下列两个问题: ①记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望E(X); ②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由. 解:(1)记抽取的3天送餐单数都不小于40为事件M, 则P(M==. (2)①设乙公司送餐员的送餐单数为a, 当a=38时,X=38×6=228, 当a=39时,X=39×6=234, 当a=40时,X=40×6=240, 当a=41时,X=40×6+1×7=247, 当a=42时,X=40×6+2×7=254. 所以X的所有可能取值为228,234,240,247,254. 故X的分布列为: X 228 234 240 247 254 P 所以E(X)=228×+234×+240×+247×+254×=241.8. ②依题意,甲公司送餐员的日平均送餐单数为 38×0.2+39×0.3+40×0.2+41×0.2+42×0.1=39.7, 所以甲公司送餐员的日平均工资为80+4×39.7=238.8元. 由①得乙公司送餐员的日平均工资为241.8元. 因为238.8<241.8,所以推荐小王去乙公司应聘.查看更多