- 2021-04-21 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
五年级下册数学教案 2可能性 北京版 (3)
1.指导思想与理论依据 数据分析观念:了解在现实生活中有许多问题应当先做调查研究,收集数据, 通过分析做出判断,体会数据中蕴涵着信息;通过数据分析体验随机性,只要有 足够的数据就可能从中发现规律。本节课,学生通过这一系列的活动,体会事件 发生的等可能性和游戏规则的公平性。一方面,“ 等可能性 ” 是一种假设,是 一种理想状态;另一方面,根据实际情况或具体场合,完全可以判定某些随机事 件是否具有“等可能性”。由客观对称性(如抛掷硬币、掷骰子等)或某种均衡 性(如摸球、抽签等),就可以认为该试验所有可能出现的结果(基本事件)是 等可能的。 几何直观:利用图形描述和分析问题,它可以帮助学生直观理解数学问题, 帮助学生将问题看得更透彻,促进理解数学核心本质。本节课,学生借助几何直 观,根据不同数量的样本所对应的饼状图的变化,认识到大数据更能说明问题, 直观感受事件发生的可能性各占一半,加深对“公平”内涵的认识。 2.教学背景分析 (一)教材分析: 1.教材纵向梳理: 学生在第一学段,已感受了“抛硬币”是一个随机事件,此时在尝试定性描 述及判断事情发生的可能性的基础上,通过“抛硬币”的活动,讨论游戏规则是 否公平,并亲身试验,验证游戏规则的公平性和等可能性;能自己尝试设计使双 方都公平的游戏。 根据学生的亲身经历和翠微小学的特点,创设足球比赛选场地的情境,让学 生当裁判,认识“公平”。再通过三次不同层次的“抛硬币”实验中体会为什么 “公平”。最后作为裁判重新设计“公平”的规则,并能读懂、辨析他人规则的 公平性和可操作性。 (二)学生情况分析: 调研对象:翠微小学五年级各班学号为 10 或 20 的学生(共 20 人)。 调研日期:2017 年 10 月 11-13 日 调研目的:了解学生对抛硬币和公平的认识程度。 调研方法:一对一访谈法。 调研题目①:你在玩棋牌类游戏时,一般是怎样决定谁先出牌的?为什么这样决 定? 分析: 方法 猜拳(石头剪刀布) 猜棋(手中棋子数量) 百分比 70% 30% 调研题目②:除此之外,你还能想到哪些方法? 分析: 方法 抛硬币 摸球 抽签 掷骰子 (橡皮) 扑克牌 小游戏 弱者 先出 百分比 75% 55% 15% 80% 70% 15% 60% 调研题目③:你认为这类游戏的输赢和什么有关?为什么? 分析: 运气 对游戏的熟悉程度 (熟悉的玩得好的赢的几率大) 百分比 100% 20% 追问:如果我和你比赛抛硬币,正面朝上算我赢,反面朝上算你们赢,我运气好, 抛了三次都是正面朝上,那第四次咱俩谁赢的可能性大吗?为什么? 老师赢的可能性大 一样大 百分比 35% 65% 学生对公平有一定的了解,但不能从机会均等的角度解释,并认为获胜主要 是靠运气。学生有过抛硬币的经验,能够想到抛硬币是公平的,但以往的抛硬币 是感受随机性,学生缺少对抛硬币正反可能性相同的内涵的理解。 (三)技术准备:iPad 两人一台,安装 Random 软件模拟抛硬币。编好 Excel 公 式,模拟抛硬币。 (四)教学准备:学生活动单、硬币、iPad、PPT。 3.教学目标(含重、难点) 教学目标: 知识与技能:根据生活经验和试验数据,判断简单的游戏规则的公平性。能设计 对双方都公平的游戏规则。 过程与方法:通过游戏活动,体验事件发生的等可能性和游戏规则的公平性,进 一步体会不确定现象的特点。 情感态度与价值观:感受生活中数学知识的应用性,体会科学家做实验严谨的科 学态度和坚持不懈的科学精神。 教学重点:体验、分析、判断规则的公平性,设计公平的游戏规则。 教学难点:让学生在游戏活动中体验事件发生的等可能性和游戏规则的公平性。 4.教学过程与教学资源设计(可附教学流程图) 课前准备:一元硬币、骰子、乒乓球、白纸、卡纸。 教学过程: 一、创设情境,提出问题 谈话引出话题:足球比赛之前,是怎么选场地的? 让学生说方法,并说明规则。 教师总结规则: 活动名称:抛硬币 使用物品:一枚硬币 活动规则: 1. 两队分别选好硬币的一面; 2. 裁判抛出硬币; 3. 硬币落地,朝上一面,相应球队选场地。 追问,用抛硬币的方法选场地真的公平吗? 预设 1:公平,因为硬币两个面朝上的几率一样。 预设 2:不公平,硬币两面质地不同,风向会影响结果。 今天我们就一起来探寻一下抛硬币中的数学问题,验证抛硬币的公平性。 (板书:抛硬币) 【设计意图:通过实际情境中规则的公平性,引出课题,有效地激发起学生的学 习兴趣,使学生产生强烈的好奇心和求知欲。学生根据已有经验,知道硬币只有 一个正面和一个反面,且质量均匀,由第三方投抛,初步判断抛硬币选场地是公 平的。】 二、实际操作,验证公平。 活动一:初步感受抛硬币——随意抛硬币 3 次。 1.教师明确硬币的正反面。 2.生抛硬币,完成活动记录单。 3.统计全班结果,观察结果,思考发现。 追问,哪些因素会影响抛硬币的结果。 预设学生感受:抛硬币的手法、高度、开始时硬币的位置、落点等。 我们每个人抛硬币的方法不一样会影响抛硬币的结果,接下来我们统一方法, 【设计意图:学生尝试抛硬币,感受抛硬币的过程,明确统一要求抛硬币的重要 性,引出后面的环节。】 活动二:统一要求,提出“大样本”的需求——两人一组,每人抛硬币 5 次。 1.教师统一并示范抛硬币的方法。 2.学生抛硬币,完成活动记录单。 3.统计全班结果,观察结果,谈发现。 预设 1:正反两面次数不一样。 预设 2:有同学的结果,正反面的数量相差很多,但汇总到全班的结果,正 反面的数量相差得少。 用人力来抛硬币费时、费力、结果容易受人为因素影响,为了得到更多的数据, 接下来我们用 iPad 来模拟抛硬币 【设计意图:统一要求抛硬币,通过统计全班结果,让学生感受数据的随机性, 即每组的结果都不相同,发现数据越多,越能证明公平,明确大样本的重要性, 引出后面的环节。】 活动三:排除人为因素,感受大数据——两人一组,每人操控 iPad 模拟抛硬币 30 次。 1.教授使用 IPAD 模拟抛硬币的方法。 2.整理结果并按顺序汇报。 3.教师记录每一列的结果,生成总数和相应的饼状图。 4.教师用 Excel 模拟抛硬币 3000 次和 5000 次,生成总数和相应的饼状图。追 问,这次能否验证抛硬币选边的公平性。 5.出示科学家的实验数据。 【设计意图:通过机器模拟实验,在大数据下进行验证,图像直观显示等可能性, 学生感知事件发生的机会均等,体会为什么“公平”,为后面设计公平的规则并 验证做出铺垫。最后通过出示科学家的实验数据,渗透科学探索精神。】 阶段小结:通过三个层次的抛硬币。让学生充分认识公平,即双方机会均等, 体会为什么公平。 三、运用所学,拓展应用 活动四:判断笑笑制定的两个规则并改进。 1. 活动名称: 掷骰子 使用物品:一枚骰子 活动规则: 1. 裁判掷骰子; 2. 点数大于 3 红队先选场地,点数小于 3 蓝红队先选场地。 2. 活动名称:摸球 使用物品:两枚红球,两枚蓝球 活动规则: 1. 裁判将球放入不透明的袋子中,摇匀; 2. 裁判摸出一枚小球; 3. 摸出红球,红队先选场地,摸出蓝球,蓝队先选场地。 活动五:选择其他物品,重新制定规则。 1. 学生仿照抛硬币的规则,当裁判,独立设计一个公平的规则。 2. 四人一组互相说自己设计的规则,选择一个最公平的。 3. 教师回收每组选出的规则,选择三个有代表性的规则展示。 4. 读懂规则,解释他的想法,说明如果你是裁判,最喜欢哪个?为什么? 如果学生制定得方案中出现总球数大于的 2 摸球游戏,提出规则时可以顺势引 导学生体会球的颜色、个数与游戏的公平性的关系。 【设计意图:在学生充分理解“公平”含义的基础上有所提高和拓展,根据已有 经验,当裁判独立制定规则,并能简单地说明游戏是否公平的理由。】 四、总结全课 简简单单的一个选场地的问题里面蕴含着这么多的数学问题,我们刚才也分 析了,有的规则确实会不太公平,我们下节课再来继续研究。 【设计意图:讲课上的知识延伸到课下,让学生感受数学的广泛应用性,在带着 疑问体会表面上的公平。】 5.学习效果评价设计 如果你是裁判,用这三种方法选场地,去除人为因素,哪种是公平的?为什么? ①袋子中准备除了颜色不同其他完全相同的红蓝两种颜色的球各 5 个,裁判从中 拿出一个球,球的颜色为红色则红队先选场地,否则,蓝队先选。 ②裁判同时抛两枚硬币,两枚正面朝上或两枚反面朝上,红队先选场地,否则, 蓝队先选。 ③有红桃 5、红桃 6、红桃 7、红桃 8 四张扑克牌,将四张牌打乱,红蓝两队 各摸一张,然后把摸到的两张牌相乘,如果乘积是奇数,红队先选,如果乘积是 偶数,蓝队先选。 6.教学设计特色说明与教学反思(300-500 字) 1.现代教学工具的灵活应用 在模拟抛硬币环节中,结合现代化教学手段,让学生在 iPad 上使用小程序 模拟抛硬币的过程,分组统计和汇总结果,既可以在短时间内得到多次抛硬币的 结果,也避免了学生在座位上抛硬币引起的混乱,便于课堂管理。同时教师在电 脑中利用 Excel 可以进行几千、几万及更多次数的模拟实验,这是采用传统教学 手段不容易实现的。 2.统计分析结果的直观展示 在统计结果的过程中,将得到的数据输入汇总到 Excel 表格中,利用 Excel 自带的饼状图生成工具,将结果由数字的形式转变为图形的形式,从而让学生更 好地理解“等可能性”这一概念。在展示数据的过程中,随着实验次数的逐渐增 加,发现和分析饼图的变化——硬币正反面的结果逐渐逼近,最终饼图的大小会 趋于相等,让学生体会“逼近二分之一”。查看更多