- 2021-04-21 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数学理卷·2018届西藏拉萨中学高二上学期第四次月考(期末)(2016-12)
拉萨中学高二年级(2018届)第四次月考理科数学试卷 命题:格春 审定: (满分100分,考试时间90分钟,请将答案填写在答题卡上) 一、选择题(每小题4分共40分) 1.不等式的解集为 ( ) A. B. C. D. 2.已知△ABC中,a=4,,则B等于( ) A.30° B.30° 或150° C.60° D.60°或120° 3.“2a>2b”是“a>b>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.等差数列中,,公差,则项数( ) A.20 B.19 C.18 D.17 5. 设,,,,且,,则下列结论中正确的是( ) A. B. C. D. 6.已知实数x,y满足,则z=4x+y的最大值为( ) A、10 B、8 C、2 D、0 7.已知向量,,且与互相垂直,则的值为( ) A. B. C. D. 8.下列命题错误的是( ) A.命题“若,则” 的逆否命题为“,则” B.“”是“” 的充分不必要条件 C.对于命题,使得,则为:, 均有 D.若为假命题, 则均为假命题 9.已知为等比数列,则( ) A.或 B. C. D.不存在 10.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于( ) A. B. C. 3 D. 5 二、填空题(每小题4分共16分) 11.已知x>0,则的最小值等于________. 12.抛物线的焦点坐标为 . 13.已知向量=(0,2,1),=(-1,1,-2),则与的夹角的大小为 . 14.在中,角所对的边分别为.若,, 则 ; . 三、解答题(本大题共5题,解答应写出演算步骤) 15.(本题满分8分)等差数列{an}的前n项和记为Sn.已知a10=30,a20=50. (1)求通项an; (2)若Sn=242,求n. 16.(本题满分8分)斜率为2的直线经过抛物线的焦点,且与抛物线相交于两点,求线段的长。 17. (本题满分8分)在中, (1)求的值; (2)求边AC的长. 【来源:全,品…中&高*考+网】 18.(本题满分10分)若不等式的解集是. (1)求的值; (2)求不等式的解集. 【来源:全,品…中&高*考+网】 19.(本题满分10分)如图,正方体ABCD-A1B1C1D1中,E,F分别为AB与BB1的中点, (1)求证:EF⊥平面A1D1B (2)求二面角F-DE-C的余弦值。 2018届高二第四次月考理数参考答案 一、选择题 1.C 2.D 3.B 4.C 5.A 6.B 7.A 8.D 9.D 10.B. 二、填空题 11. 2+4√3 12. 13. 14. 三、解答题 15.(8分)(1)an=2n+10(2)n=11【来源:全,品…中&高*考+网】 解析:(1)由an=a1+(n﹣1)d,a10=30,a20=50,得 方程组 解得a1=12,d=2.所以an=2n+10. (2)由,得 方程.解得n=11或n=﹣22(舍去). 16. 解:抛物线y2=8x的焦点F(2,0),准线方程为x=-2 ∴直线AB的方程为y=2(x-2)【来源:全,品…中&高*考+网】 联立方程 y=2(x-2)与 可得x2-8x+4=0 ∴xA+xB=8,xA•xB=4 由抛物线的定义可知,AB=AF+BF=xA+2+xB+2=xA+xB+4=10 ∴ 17.解:(1)∵ ∴ 即 解得 (2)∵ 由余弦定理得 解得AC= 18.解(1)依题意,可知方程的两个实数根为和 由韦达定理得: 解得: (2)∵ ∴为 ∴不等式解集为 19. 解:(1)以D为原点,分别以DA、DC、DD1所在直线为X、Y、Z轴,建立空间直角坐标系(如图所示),设正方体ABCD-A1B1C1D1棱长为2,则E(2,1,0),F(2,2,1),【来源:全,品…中&高*考+网】 A1(2,0,2),D1(0,0,2),B(2,2,0);=(0,1,1), =(-2,0,0),=(0,2,-2). 由•=0,•=0 ,可得 EF⊥A1D1, EF⊥A1B,∴EF⊥平面A1D1B (2)平面CDE的法向量为=(0,0,2),设平面DEF的法向量为 =(x,y,z),由•=0,•=0 ,解得2 x= - y=z, 可取 =(1,-2,2),设二面角F-DE-C大小为θ, ∴cosθ===, 查看更多