高中数学:三-1《相似三角形的判定》教案2(新人教A版选修4-1)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高中数学:三-1《相似三角形的判定》教案2(新人教A版选修4-1)

相似三角形的判定 ‎〔教学目标〕‎ 1. 掌握判定两个三角形相似的方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。‎ 2. 培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法2与全等三角形判定方法(SAS)的区别与联系,体验事物间特殊与一般的关系。‎ 3. 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。‎ ‎〔教学重点与难点〕‎ 重点:两个三角形相似的判定方法2及其应用 难点:探究两个三角形相似判定方法2的过程 ‎〔教学设计〕‎ 教学过程 设计意图说明 新课引入:‎ 1. 复习两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系: ‎ SSS ‎↓‎ 如果两个三角形的三组对应边的比相等,那么这两个三角形相似。(相似的判定方法1)‎ 2. 回顾探究判定引例﹑判定方法1的过程 ‎↓‎ 探究两个三角形相似判定方法2的途径 从回顾探究判定引例﹑判定方法1的过程及复习两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系两个角度来以旧引新,帮助学生建立新旧知识间的联系,体会事物间一般到特殊﹑特殊到一般的关系。‎ 提出问题:‎ 利用刻度尺和量角器画∆ABC与∆A1B‎1C1,使∠A=∠A1,和都等于给定的值k,量出它们的第三组对应边BC和B‎1C1的长,它们的比等于k吗?另外两组对应角∠B与∠B1,∠C与∠C1是否相等? ‎ ‎ (学生独立操作并判断)‎ ‎↓‎ 分析:学生通过度量,不难发现这两个三角形的第三组对应边BC和B‎1C1的比都等于k,另外两组对应角∠B=∠B1,∠C=∠C1。 ‎ 延伸问题:‎ 改变∠A或k值的大小,再试一试,是否有同样的结论?(利用刻度尺和量角器,让学生先进行小组合作再作出具体判断。)‎ 学生通过作图,动手度量三角形的各边的比例以及三角形的各个角的大小,从尺规实验的角度探索命题成立的可能性,丰富学生的尺规作图与尺规探究经验。‎ 改变∠A或k值的大小再作尺规探究,可以培养学生在变化中捕捉不变因素的能力。‎ 探究方法:‎ 探究2‎ 改变∠A或k值的大小,再试一试,是否有同样的结论?(教师应用“几何画板”等计算机软件作动态探究进行演示验证,引导学生学习如何在动态变化中捕捉不变因素。)‎ ‎↓‎ 归纳:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。(定理的证明由学生独立完成)‎ 若∠A=∠A1,==k 则 ∆ABC∽∆A1B‎1C1‎ 辨析:对于∆ABC与∆A1B‎1C1,如果=,∠B=∠B1,‎ 这两个三角形相似吗?试着画画看。(让学生先独立思考,再进行小组交流,寻找问题的所在,并集中展示反例。)‎ 通过几何画板演示验证,培养学生学习在图形的动态变化中探究不变因素的能力。‎ 对几何定理作文字语言﹑图形语言﹑符号语言的三维注解有利于学生进行认知重构,以全方位地准确把握定理的内容。‎ 通过辨析,使学生对两个三角形相似判定方法2的判定条件- -“并且相应的夹角相等”具有较深刻的认识,培养学生严谨的思维习惯。‎ 应用新知:‎ 例1:根据下列条件,判断 ∆ABC与∆A1B‎1C1是否相似,并说明理由:‎ ‎(1)∠A=1200,AB=‎7cm,AC=‎14cm,‎ ‎ ∠A1=1200,A1B1= ‎3cm,A‎1C1=‎6cm。‎ ‎(2)∠B=1200,AB=‎2cm,AC=‎6cm,‎ ‎ ∠B1=1200,A1B1= ‎8cm,A‎1C1=‎24cm。‎ 分析: (1)==,∠A=∠A1=1200‎ ‎ ‎ 让学生了解运用相似三角形的判定方法2进行判定三角形相似的一般思路,体会这与运用全等三角形的判定方法SAS进行相关证明与计算的雷同性。‎ ‎ ∆ABC∽∆A1B‎1C1‎ ‎(2)==,∠B=∠B1=1200但∠B与∠B1不是AB ﹑AC﹑ A1B1 ﹑A‎1C1的夹角,所以∆ABC与∆A1B‎1C1不相似。‎ 让学生注意到:两个三角形相似判定方法2的判定条件“角相等”必须是 ‎“夹角相等”。‎ 运用提高 运用相似三角形的判定方法2进行相关证明与计算,让学生在练习中熟悉定理。‎ 课堂小结:说说你在本节课的收获。‎ 让学生及时回顾整理本节课所学的知识。‎ 布置作业:‎ 1. 备选题:‎ 已知零件的外径为‎25cm,要求它的厚度x,需先求出它的内孔直径AB,现用一个交叉卡钳(AC和BD的长相等)去量(如图),若OA:OC=OB:OD=3,CD=‎7cm。求此零件的厚度x。 ‎ 分层次布置作业,让不同的学生在本节课中都有收获。‎ 备选题答案:x=‎‎2cm 设计思想:‎ ‎ 本节课主要是探究相似三角形的判定方法2,由于上节课已经学习了探究两个三角形相似的判定引例﹑判定方法1,而本节课内容在探究方法上又具有一定的相似性,因此本教学设计注意方法上的“新旧联系”,以帮助学生形成认知上的正迁移。此外,由于判定方法2的条件“相应的夹角相等”在应用中容易让学生忽视,所以教学设计采用了“小组讨论+集中展示反例”的学习形式来加深学生的印象。‎ w.w.w.k.s.5.u.c.o.m ‎ www.ks5u.com
查看更多

相关文章

您可能关注的文档