- 2021-04-20 发布 |
- 37.5 KB |
- 12页
![](http://data.wuyouwenku.com/file-convert/2020/10/19/15/22/efec38471589f32a7ce5259a3f5394bf/img/1.jpg)
![](http://data.wuyouwenku.com/file-convert/2020/10/19/15/22/efec38471589f32a7ce5259a3f5394bf/img/2.jpg)
![](http://data.wuyouwenku.com/file-convert/2020/10/19/15/22/efec38471589f32a7ce5259a3f5394bf/img/3.jpg)
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
江淮十校2020届高三第一次联考理数答案
理科数学参考答案 一.选择题 1.B 解析: 22| yyyA 或 , 22 xB 则 2,2 BA 所以 P 的子集个 数为四个,选 B. 2.B 解 析 : 令 yixz 则 有 443 22 yx , 22 yxzz 所 以 其 最 大 值 为 4952 2 选 B. 3. B .∵ , ,a b c 为正数,∴当 2, 2, 3a b c 时,满足 a b c ,但 2 2 2a b c 不成立,即充 分性不成立,若 2 2 2a b c ,则 2 22 a b ab c ,即 2 2 22 a b c ab c , 即 2 2 a b c ,即 a b c ,成立,即必要性成立, 则“ a b c ”是“ 2 2 2a b c ”的必要不充分条件, 故选: B . 4.B 解析:∵ 2a b a ∴ 22 2 0, 2 cos , 0a b a a b a a b 即 , ∵ =a b , ∴ 1cos , 2a b ,∴ ,a b 的夹角为 3 故选:B 5.C 解 析 : 根 据 对 数 函 数 的 单 调 性 可 以 得 到 1 1 3 3 ln ln 1, log log 1 0,x e z 根 据 指 数 函 数 的 性 质 可 得 1 3 0,1 ,y e z y x ,故选 C. 6 A 解析:如图:设 2BC ,以 B 为圆心的扇形面积是 22 2 6 3 , ABC 的面积是 1 32 2 32 2 , 所以勒洛三角形的面积为 3 个扇形面积减去 2 个正三角形面积, 即 2 3 2 3 2 2 33 , 所以在勒洛三角形中随机取一点,此点取自正三角形外部的概率是 32 332 322 31 故选 A 7.C 解析:因为 AD 在平面 1 1ADD A 内,且平行平面CBF ,故 A 错误; 平面 CBF 即平面 1 1A D CB ,又平面 1 1A D CB 与平面 ABCD 斜相交, 所以在平面 ABCD 内不存在与平面 CBF 垂直的直线,故 B 错误; F 到平面 ABCD 的距离不变且 FC 变小,FC 与平面 ABCD 所成的角变大 故 C 正确; 平面 CBF 即平面 1 1A D CB ,点 D 到平面 1 1A D CB 的距离为定值,故 D 错误. 故选 C. 8.A 解析: 36 36 37 37 44 40 43 44 43 409x , 2 16 16 9 9 16 0 9 16 9 100 9 9s 10 3s ,年龄在 ( , )x s x s 内,即 110 130,3 3 内的人数有 5 人, 所以年龄在 ( , )x s x s 内的人数占公司总人数的百分比是等于 5 056 09 ,故选 A. 9 C 解析:由题意可知 xxf 2sin 则只有 C 选项符合 答案:C 10.B 解析:对任意实数 x ,恒有 01 axex 成立,则可得 1a ,关于 x 的方程 01ln)( xxax 转化为 1 1ln x xx ,若 1x 满足 1 1ln 1 1 1 x xx ,则有 11 11 1ln 1 1 1 x x x 结 合原方程有两根 为 )(, 2121 xxxx ,所以 即 1 2 1 xx 121 xx 故选 B 11.B 解析: a cea bkk BMAM 2 2 ,由于 222 acb 则解得 2 15 e ,选 B 12.A 解析:如图,取 AB 中点 E,连接 CE,DE,设 2 (0 1)AB x x , 则 21CE DE x , 当平面 ABC 平面 ABD 时,四面体体积最大, 四面体的体积 2 2 31 1 1 12 1 13 2 3 3V x x x x x . 21' 3V x , 当 30, 3x 时,V 为增函数,当 3 ,13x 时,V 为减函数, 则当 3 3x 时,V 有最大值 ABC 与 ABD 外接圆的半径 4 6r ,则四面体 ABCD 的外接球半径 12 52 222 xrR 所以时其外接球表面积为 3 5 ,选 A 二.填空题 13: 2 3 14. -30 15 1,5 16. 1 17.(1) ① ②............3 分 ①-②得 (2) 6 1 2 1nS n n n 16 1 2 1 , 2nS n n n n 2 1 2 1 1 n n a n n a a n 当 时, 符合上式. 2 1 1 1 1 1 4 1 2 2 1 2 14 1 1 1 1 1 1 112 3 3 5 2 1 2 1 1 112 2 1 1 10,0 1 12 1 2 1 1 .2 n n n n b a n nn T n n n n N n n T ....................................................................10 分 18. 解 析 : ( 1 ) 由 0 ACBA 可 得 0cos A , 3 1 3 221sin1cos 2 2 AA ........2 分 因为 CBA 222 sin3sinsin , 由正弦定理可得: 222 3cba 即 222 3cba 又 3 1 2cos 222 bc acbA ,所以 3 1 2 3 2222 bc cbcb 化简整理可得: 3 1 b c ; .......6 分 由正弦定理 3sin sin c b C B ......7 分 (2)由(1)可知, cb 3 且 222 3cba , 2a 联 立 可 解 得 3,3 3 bc .......10 分 所 以 ABC 的 面 积 3 2 3 22 3 332 1sin2 1 AbcS .......12 分 19(1)由题意可得, ABD CBD ,从而 AD DC , 又 ACD 是直角三角形,所以 090ADC 取 AC 的中点 O,连接 DO,BO,则 ,DO AC DO AO , 又由 ABC 是正三角形,所以 BO AC ,.......2 分 所以 DOB 是二面角 D AC B 的平面角, 在直角 AOB 中, 2 2 2BO AO AB , 又, AB BD 所以 2 2 2 2 2 2BO DO BO AO AB BD ,故 090DOB ,所以平 面 ACD 平面 ABC 。.........5 分 (2)由题设及(1)可知OA,OB ,OC 两两垂直,以O 为坐 标原点,建立如图所示的空间直角坐标系O xyz , 则 1,0,0 , 0, 3,0 , 1,0,0 , 0,0,1A B C D E 为 DB 的中点,得 3 10, ,2 2E . 故 3 1( 1,0,1), ( 2,0,0), ( 1, , )2 2AD AC AE , 设 ( , , )n x y z 是平面 DAE 的法向量,则 0 0 n AD n AE ,即 0 3 1 02 2 x z x y z , 令 1x ,则 3 , 13y z ,即平面 DAE 的一个法向量 3(1, ,1)3n ,....7 分 设 ( , , )m x y z 是平面 AEC 的法向量,则 0 0 m AC m AE , 可得平面 AEC 的一个法向量 (0, 1, 3)n ,...9 分 则 7cos , 7 m nm n m n ,即二面角 CAED 的余弦值为 7 7 ........11 分 所以二面角 CAED 的正弦值为 7 42 7 11 ........12 分 20:(1)设 ,C x y 0y .则 ,3 3 x yG ,由于 㣐ᙵᙵʒ끄 则 3,0 yQ ...........2 分 由 2 2 2 41 9 9 y yQA QC x 2 2 13 yx ①......4 分 故轨迹 E 的方程为 2 2 1 03 yx y .....5 分 (2) 2211 ,,,1 yxNyxMkxyL yL ,设:假设存在直线 轴重合时不符合条件。与当 联立 131 2 2 yxkxy 与 则有 分7........3 2,3 2 ,0223 221221 2 kxxk kxx kxk 由于 PNMP 2 则有 22 2 1 21 x xxx 即 2 222 2 2 21 2 21 3 2 2 3 3 4 k kk k k xx xx 由于 2 12 1 2 2 1 21 2 21 x x x x xx xx 则有 112 kk 即 ,......10 分 则直线 L 过 0,1,0,1 或 ......11 分 所以直线 L 不存在......12 分 分时当是偶函数又 单调递减时当, 单调递增;时,单调递减;当时,当 分,得时当 、 5..............00,2,2,, 00,,0',2,0;0412'00' ',0''2,3',0''3,0 2..............30'',2,02 1cos'' 2,2,2 1sin'2,2,14 1cos121 2 fxfxxfxfxf fxfxfxfxff xfxfxxfxfx xxfxxxf xxxxfxxxxf 分有三个零点综上: 有且只有一个零点;,无零点,在,在是偶函数,又 分上有且只有一个零点;在上有且有一个零点,即,无零点,在在 单调递增;时,,单调递减;当时,当 分时, 单调递增, 时,当 分无零点;时,当 分有一个零点时,可知,当由 三个零点 12....... 233 11.....3,23,2 ,04 53cos3,02,01162 ,0'3,0',2 9.........;.........0'3,2 02 33sin3',0412'' 02 1cos'',2 1sin'3,2 7........,04 91cos,3 6;......0,2,21 2 00 0 2 00 0 xf xfxf xfxxxf ffxff xfxfxxxfxfxx xfx ffxf xxfxxxfx xfxxfx xxfx 22 (1) 8 1 2 16,8 3 2 15 8 3 2 14,8 1 2 13 6,54,3 33 2 3 3 1 3 3 XPCXP CXPXP X ,可取 分布列如下: X 3 4 5 6 P 8 1 8 3 8 3 8 1 ........3 分 2 9 8 168 358 348 13 EX .........4 分 (2)易知棋子先跳到第 2n 站,再掷出反面,其概率为 2 1 2 nP ;棋子先跳到第 1n 站, 再掷出正面,其概率为 1 1 2 nP ,因此有 1 2 1 2n n nP P P ,...........6 分 即 1 1 2 1 2n n n nP P P P , 也即.. 982)(2 1 11 nPPPP nnnn ..........8 分 (3)由(2)知数列 1 1n nP P n 是首项为 1 1n nP P n 1 0 1 112 2P P , 公比为 1 2 的等比数列.因此有 1 1 1 0 11 2 2 nn n n nP P P P ...........10 分 由此得到 99 98 99 100 1 1 1 2 11 12 2 2 3 2P ........11 分 9998 99 9899 2 113 2,2 1 PPP 则又 由于若跳到第 99 站时,自动停止游戏,故有 100 98 99 1 1 112 3 2P P ............12 分查看更多