高考数学人教A版(理)一轮复习:小题专项集训(十五) 圆锥曲线

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学人教A版(理)一轮复习:小题专项集训(十五) 圆锥曲线

小题专项集训(十五) 圆锥曲线 ‎ ‎(时间:40分钟 满分:75分)‎ 一、选择题(每小题5分,共50分)‎ ‎1.设椭圆+=1(m>n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为 (  ).‎ A.+=1 B.+=1‎ C.+=1 D.+=1‎ 解析 依题意知:=,得m=4.由n2=m2-22=12,所以所求椭圆方程是+=1.‎ 答案 B ‎2.已知中心在原点的双曲线的顶点与焦点分别是椭圆+=1(a>b>0)的焦点与顶点,若双曲线的离心率为2,则椭圆离心率为 (  ).‎ A. B. C. D. 解析 依题意知双曲线的顶点(c,0),(-c,0),焦点为(a,0),(-a,0),则=2,故椭圆的离心率e==.‎ 答案 B ‎3.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是 ‎ ‎(  ).‎ A.椭圆 B.双曲线 C.抛物线 D.圆 解析 由条件知|PM|=|PF|.‎ ‎∴|PO|+|PF|=|PO|+|PM|=|OM|=R>|OF|.‎ ‎∴P点的轨迹是以O、F为焦点的椭圆.‎ 答案 A ‎4.P为椭圆+=1上一点,F1,F2为该椭圆的两个焦点,若∠F1PF2=60°,则·= (  ).‎ A.3 B. C.2 D.2‎ 解析 ∵S△PF1F2=b2tan =3×tan 30°==||·||·sin 60°,‎ ‎∴||·||=4,∴·=4×=2.‎ 答案 D ‎5.已知中心在原点,焦点在x轴上的双曲线的离心率为,其焦点到渐近线的距离为1,则此双曲线的方程为 (  ).‎ A.-=1 B.-=1‎ C.-y2=1 D.x2-y2=1‎ 解析 根据题目条件中双曲线的离心率为,可以排除选项B和D,选项A中,一个焦点为(,0),其渐近线方程为x±y=0,那么焦点到渐近线的距离为d==≠1,也可以排除,故选择正确答案C.‎ 答案 C ‎6.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为 ‎ ‎(  ).‎ A.x=1 B.x=-1 [来源:学+科+网Z+X+X+K]‎ C.x=2 D.x=-2‎ 解析 令A(x1,y1),B(x2,y2),因为抛物线的焦点F,所以过焦点且斜率为1的直线方程为y=x-,即x=y+,将其代入y2=2px=2p=2py+p2,所以y2-2py-p2=0,所以=p=2,所以抛物线的方程为y2=4x,准线方程为x=-1,故选B.‎ 答案 B ‎7.△ABC的顶点A(-5,0)、B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是 (  ).‎ A.-=1 B.-=1‎ C.-=1(x>3) D.-=1(x>4)‎ 解析 如图|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,所以|CA|-|CB|=8-2=6.根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为-=1(x>3).‎ 答案 C ‎8.在焦点分别为F1,F2的双曲线上有一点P,若∠F1PF2=,|PF2|=2|PF1|,则该双曲线的离心率等于 (  ).‎ A.2 B. C.3 D. 解析 在△F1PF2中,由余弦定理可得 cos ==,‎ 解得|PF1|=c,则|PF2|=c,‎ 由双曲线的定义可得|PF2|-|PF1|=c-c=2a,‎ 即=,故选D.‎ 答案 D ‎9.已知抛物线y2=8x的准线与双曲线-y2=1(m>0)交于A,B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率是 (  ).[来源:学*科*网]‎ A. B. C.2 D.2 解析 抛物线的准线方程为x=-2,设准线与x轴的交点为D(-2,0),由题意得∠AFB=90°,故|AB|=2|DF|=8,故点A的坐标为(-2,4).由点A在双曲线-y2=1上可得-42=1,解得m=.故c2=m+1=,故双曲线的离心率e== =.‎ 答案 B ‎10.设P为圆x2+y2=1上的动点,过P作x轴的垂线,垂足为Q,若=λ(其中λ为正常数),则点M的轨迹为 (  ).‎ A.圆 B.椭圆 C.双曲线 D.抛物线 解析 设M(x,y),P(x0,y0),则Q(x0,0),由=λ,得(λ>0),∴[来源:学科网ZXXK]‎ 由于x+y=1,∴x2+(λ+1)2y2=1,∴M的轨迹为椭圆.‎ 答案 B 二、填空题(每小题5分,共25分)‎ ‎11.若抛物线y2=2px(p>0)的焦点与椭圆+=1的右焦点重合,则p的值为________.‎ 解析 抛物线的焦点为,椭圆中,a=,b=,所以c=2,即右焦点为(2,0).所以=2,即p=4.‎ 答案 4‎ ‎12.在平面直角坐标系xOy中,若定点A(1,2)与动点P(x,y)满足·=4,则点P的轨迹方程是______________________________________________.‎ 解析 由·=4,得(x,y)·(1,2)=4,即x+2y=4.‎ 答案 x+2y-4=0‎ ‎13.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为________.‎ 解析 由定义,知|PF1|-|PF2|=2a.‎ 又|PF1|=4|PF2|,∴|PF1|=a,|PF2|=a.‎ 在△PF1F2中,由余弦定理,‎ 得cos∠F1PF2==-e2.‎ 要求e的最大值,即求cos∠F1PF2的最小值,‎ ‎∴当cos∠F1PF2=-1时,得e=,即e的最大值为.‎ 答案 [来源:Zxxk.Com]‎ ‎14.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.‎ 解析 根据椭圆C的焦点在x轴上,可设椭圆C的方程为+=1(a>b>0),∵e=,∴=.根据△ABF2的周长为16,得4a=16,∴a=4,b=2,∴椭圆C 的方程为+=1.‎ 答案 +=1‎ ‎15.(2013·枣庄一模)已知△ABC的顶点B(0,0),C(5,0),AB边上的中线长|CD|=3,则顶点A的轨迹方程为________.‎ 解析 法一 (直接法)设A(x,y),y≠0,则D,[来源:学§科§网Z§X§X§K]‎ ‎∴|CD|= =3,‎ 化简得(x-10)2+y2=36,由于A,B,C三点构成三角形,所以A不能落在x轴上,即y≠0.‎ 法二 (定义法)如图所示,设A(x,y),D为AB的中点,过A作AE∥CD交x轴于E.‎ ‎∵|CD|=3,∴|AE|=6,则E(10,0).‎ ‎∴A的轨迹为以E为圆心,6为半径的圆,即(x-10)2+y2=36,又A,B,C三点构成三角形,∴A点纵坐标y≠0,故A点轨迹方程为(x-10)2+y2=36(y≠0).‎ 答案 (x-10)2+y2=36(y≠0)‎
查看更多

相关文章

您可能关注的文档