2020届二轮复习导数的简单应用课时作业(全国通用)
第3讲 导数的简单应用
一、选择题
1.已知直线2x-y+1=0与曲线y=aex+x相切(其中e为自然对数的底数),则实数a的值是( )
A. B.1
C.2 D.e
解析:选B.由题意知y′=aex+1=2,则a>0,x=-ln a,代入曲线方程得y=1-ln a,所以切线方程为y-(1-ln a)=2(x+ln a),即y=2x+ln a+1=2x+1⇒a=1.
2.已知函数f(x)=x3+ax2+bx+a2在x=1处的极值为10,则数对(a,b)为( )
A.(-3,3) B.(-11,4)
C.(4,-11) D.(-3,3)或(4,-11)
解析:选C.f′(x)=3x2+2ax+b,依题意可得即消去b可得a2-a-12=0,解得a=-3或a=4,故或
当时,f′(x)=3x2-6x+3=3(x-1)2≥0,这时f(x)无极值,不合题意,舍去,故选C.
3.(2019·南昌市第一次模拟测试)已知f(x)在R上连续可导,f′(x)为其导函数,且f(x)=ex+e-x-f′(1)x·(ex-e-x),则f′(2)+f′(-2)-f′(0)f′(1)=( )
A.4e2+4e-2 B.4e2-4e-2
C.0 D.4e2
解析:选C.由题意,得f′(x)=ex-e-x-f′(1) [ex-e-x+x(ex+e-x)],所以f′(0)=e0-e0-f′(1)[e0-e0+0·(e0+e0)]=0,f′(2)+f′(-2)=0,所以f′(2)+f′(-2)-f′(0)f′(1)=0,故选C.
4.已知f(x)=x2+ax+3ln x在(1,+∞)上是增函数,则实数a的取值范围为( )
A.(-∞,-2] B.
C.[-2,+∞) D.[-5,+∞)
解析:选C.由题意得f′(x)=2x+a+=≥0在(1,+∞)上恒成立⇔g(x)=2x2+ax+3≥0在(1,+∞)上恒成立⇔Δ=a2-24≤0或⇔-2≤a≤2或⇔a
≥-2,故选C.
5.函数f(x)(x>0)的导函数为f′(x),若xf′(x)+f(x)=ex,且f(1)=e,则( )
A.f(x)的最小值为e B.f(x)的最大值为e
C.f(x)的最小值为 D.f(x)的最大值为
解析:选A.设g(x)=xf(x)-ex,
所以g′(x)=f(x)+xf′(x)-ex=0,
所以g(x)=xf(x)-ex为常数函数.
因为g(1)=1×f(1)-e=0,
所以g(x)=xf(x)-ex=g(1)=0,
所以f(x)=,f′(x)=,
当0
1时,f′(x)>0,
所以f(x)≥f(1)=e.
6.若函数f(x)=ex-(m+1)ln x+2(m+1)x-1恰有两个极值点,则实数m的取值范围为( )
A.(-e2,-e) B.
C. D.(-∞,-e-1)
解析:选D.由题意,函数的定义域为(0,+∞),f′(x)=ex-(m+1)=0在(0,+∞)上有两个不相等的实数根,所以m+1=在(0,+∞)上有两个不相等的实数根,令g(x)=,则g′(x)=,所以函数g(x)在,上单调递增,在(1,+∞)上单调递减,其图象如图所示,要使m+1=在(0,+∞)上有两个不相等的实数根,则m+10),所以f′(x)=2x-,令2x-=0得x=,令f′(x)>0,则x>;令f′(x)<0,则00,即a<2x-4ex有解,即a<(2x-4ex)max即可.令g(x)=2x-4ex,则g′(x)=2-4ex.令g′(x)=0,解得x=-ln 2.当x∈(-∞,-ln 2)时,函数g(x)=2x-4ex单调递增;当x∈(-ln 2,+∞)时,函数g(x)=2x-4ex单调递减.所以当x=-ln 2时,g(x)=2x-4ex取得最大值-2-2ln 2,所以a<-2-2ln 2.
答案:(-∞,-2-2ln 2)
三、解答题
10.已知函数f(x)=ln x-ax2+x,a∈R.
(1)当a=0时,求曲线y=f(x)在点(e,f(e))处的切线方程;
(2)讨论f(x)的单调性.
解:(1)当a=0时,f(x)=ln x+x, f(e)=e+1,f′(x)=+1,f′(e)=1+,所以曲线y=f(x)在点(e,f(e))处的切线方程为y-(e+1)=(x-e),即y=x.
(2)f′(x)=-2ax+1=,x>0,
①当a≤0时,显然f′(x)>0,所以f(x)在(0,+∞)上单调递增;
②当a>0时,令f′(x)==0,则-2ax2+x+1=0,易知其判别式为正,
设方程的两根分别为x1,x2(x10.
令f′(x)>0,得x∈(0,x2),令f′(x)<0得x∈(x2,+∞),其中x2=.
所以函数f(x)在上单调递增,
在上单调递减.
11.已知常数a≠0,f(x)=aln x+2x.
(1)当a=-4时,求f(x)的极值;
(2)当f(x)的最小值不小于-a时,求实数a的取值范围.
解:(1)由已知得f(x)的定义域为(0,+∞),
f′(x)=+2=.
当a=-4时,f′(x)=.
所以当02时,f′(x)>0,即f(x)单调递增.
所以f(x)只有极小值,且在x=2时,f(x)取得极小值f(2)=4-4ln 2.
所以当a=-4时,f(x)只有极小值4-4ln 2.
(2)因为f′(x)=,
所以当a>0,x∈(0,+∞)时,f′(x)>0,
即f(x)在x∈(0,+∞)上单调递增,没有最小值;
当a<0时,由f′(x)>0得,x>-,
所以f(x)在上单调递增;
由f′(x)<0得,x<-,
所以f(x)在上单调递减.
所以当a<0时,f(x)的最小值为极小值,即f=aln-a.
根据题意得f=aln-a≥-a,
即a[ln(-a)-ln 2]≥0.
因为a<0,所以ln(-a)-ln 2≤0,解得a≥-2,
综上实数a的取值范围是[-2,0).
12.(2019·广州市调研测试)已知函数f(x)=xex+a(ln x+x).
(1)若a=-e,求f(x)的单调区间;
(2)当a<0时,记f(x)的最小值为m,求证:m≤1.
解:(1)当a=-e时,f(x)=xex-e(ln x+x),f(x)的定义域是(0,+∞).
f′(x)=(x+1)ex-e=(xex-e).
当01时.f′(x)>0.
所以函数f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).
(2)证明:f(x)的定义域是(0,+∞),f′(x)=(xex+a),
令g(x)=xex+a,则g′(x)=(x+1)ex>0,g(x)在(0,+∞)上单调递增.
因为a<0,所以g(0)=a<0,g(-a)=-ae-a+a>-a+a=0,
故存在x0∈(0,-a),使得g(x0)=x0ex0+a=0.
当x∈(0,x0)时,g(x)<0,f′(x)=(xex+a)<0,f(x)单调递减;
当x∈(x0,+∞)时,g(x)>0,f′(x)=(xex+a)>0,f(x)单调递增.
故x=x0时,f(x)取得最小值,即m=f(x0)=x0ex0+a(ln x0+x0).
由x0ex0+a=0得m=x0ex0+a ln(x0ex0)=-a+a ln(-a),
令x=-a>0,h(x)=x-x ln x,则h′(x)=1-(1+ln x)=-ln x,
当x∈(0,1)时,h′(x)=-ln x>0,h(x)=x-xln x单调递增,
当x∈(1,+∞)时,h′(x)=-ln x<0,h(x)=x-xln x单调递减,
故x=1,即a=-1时,h(x)=x-x ln x取得最大值1,故m≤1.