高考全国2卷文数试题及答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考全国2卷文数试题及答案

‎2016年普通高等学校招生全国统一考试 文科数学 注意事项:‎ ‎1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。‎ ‎2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。写在本试卷上无效。‎ ‎3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。‎ ‎4.考试结束,将试题卷和答题卡一并交回。‎ 第Ⅰ卷 一、 选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。‎ ‎(1)已知集合,则 ‎(A) (B) (C) (D)‎ ‎(2)设复数z满足,则=‎ ‎(A)(B)(C)(D)‎ ‎(3) 函数的部分图像如图所示,则 ‎(A)‎ ‎(B)‎ ‎(C)‎ ‎(D)‎ ‎(4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 ‎(A)(B)(C)(D)‎ ‎(5) 设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=‎ ‎(A)(B)1 (C)(D)2‎ ‎(6) 圆x2+y2−2x−8y+13=0的圆心到直线ax+y−1=0的距离为1,则a=‎ ‎(A)−(B)−(C)(D)2‎ ‎(7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ‎(A)20π(B)24π(C)28π(D)32π ‎(8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 ‎(A)(B)(C)(D)‎ ‎(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a为2,2,5,则输出的s=‎ ‎(A)7‎ ‎(B)12‎ ‎(C)17‎ ‎(D)34‎ ‎(10) 下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是 ‎(A)y=x(B)y=lgx(C)y=2x(D)‎ ‎(11) 函数的最大值为 ‎(A)4(B)5 (C)6 (D)7‎ ‎(12) 已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3| 与y=f(x) 图像的交点为(x1,y1),(x2,y2),…,(xm,ym),则 ‎(A)0 (B)m (C) 2m (D) 4m 二.填空题:共4小题,每小题5分.‎ ‎(13) 已知向量a=(m,4),b=(3,-2),且a∥b,则m=___________. ‎ ‎(14) 若x,y满足约束条件,则z=x-2y的最小值为__________‎ ‎(15)△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.‎ ‎(16)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.‎ 三、解答题:解答应写出文字说明,证明过程或演算步骤.‎ ‎(17)(本小题满分12分)‎ 等差数列{}中,‎ ‎(I)求{}的通项公式;‎ ‎(II)设=[],求数列{}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2‎ ‎(18)(本小题满分12分)‎ 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ ‎(I)记A为事件:“一续保人本年度的保费不高于基本保费”。求P(A)的估计值;‎ ‎(II)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.‎ 求P(B)的估计值;‎ ‎(III)求续保人本年度的平均保费估计值.‎ ‎(19)(本小题满分12分)‎ ‎ 如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将沿EF折到的位置.‎ ‎(I)证明:;‎ ‎(II)若,求五棱锥体积.‎ ‎(20)(本小题满分12分)‎ ‎ 已知函数.‎ ‎(I)当时,求曲线在处的切线方程;‎ ‎(II)若当时,,求的取值范围.‎ ‎(21)(本小题满分12分)‎ 已知A是椭圆E:的左顶点,斜率为的直线交E与A,M两点,点N在E上,.‎ ‎(I)当时,求的面积 ‎(II)当时,证明:.‎ 请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.‎ ‎(22)(本小题满分10分)选修4-1:几何证明选讲 如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F. ‎ ‎(Ⅰ)证明:B,C,G,F四点共圆;‎ ‎(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.‎ ‎(23)(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy中,圆C的方程为.‎ ‎(Ⅰ)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求C的极坐标方程;‎ ‎(Ⅱ)直线l的参数方程是(t为参数),l与C交于A,B两点,,求l的斜率.‎ ‎(24)(本小题满分10分)选修4-5:不等式选讲 已知函数,M为不等式的解集. ‎ ‎(Ⅰ)求M;‎ ‎(Ⅱ)证明:当a,b时,.‎ D C A A D A C B C D B B 和 ‎17.‎ ‎【试题分析】(I)先设的首项和公差,再利用已知条件可得和,进而可得的通项公式;(II)根据的通项公式的特点,采用分组求和法,即可得数列的前项和.‎ ‎18. ‎ ‎【试题分析】(I)由已知可得续保人本年度的保费不高于基本保费的频数,进而可得的估计值;(II)由已知可得续保人本年度的保费高于基本保费但不高于基本保费的160%的频数,进而可得的估计值;(III)计算出险次数的频率,进而可得续保人本年度的平均保费估计值.‎ ‎19.‎ ‎【试题分析】(I)先证,,再证平面,即可证;(II)先证,进而可证平面,再计算菱形和的面积,进而可得五棱锥的体积.‎ ‎20.‎ ‎ ‎ ‎21.‎ ‎【试题分析】(I)设点的坐标,由已知条件可得点的坐标,进而可得的面积.‎ 请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.‎ ‎22.‎ ‎【试题分析】(I)先证,再证,进而可证,,,四点共圆;(II)先证,再计算的面积,进而可得四边形BCGF的面积.‎ 解析:(I)在正方形中,,所以 因为,所以,所以 所以 所以 ‎23.‎ ‎【试题分析】(I)利用,可得C的极坐标方程;(II)先将直线的参数方程化为普通方程,再利用弦长公式可得的斜率.‎ 解析:(I)由得 ‎,‎ 故的极坐标方程为 ‎(II)由(为参数)得,即 圆心,半径 圆心到直线的距离 即,解得,所以的斜率为.‎ ‎24.(‎ 当时,,所以 当时,,解得,所以 所以 ‎(II)‎ ‎,‎ ‎,‎ ‎,‎ 即
查看更多

相关文章

您可能关注的文档