- 2021-04-18 发布 |
- 37.5 KB |
- 25页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
湖北省武汉十一中2017届高三上学期综合训练物理试卷(9)
2016-2017学年湖北省武汉十一中高三(上)综合训练物理试卷(9) 一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分. 1.在物理学发展史上,伽利略、牛顿等许许多多科学家为物理学的发展做出了巨大贡献.以下选项中符合伽利略和牛顿的观点的是( ) A.人在沿直线加速前进的车厢内竖直向上跳起后,将落在起跳点的后方 B.两匹马拉车比一匹马拉车跑得快,这说明:物体受的力越大则速度就越大 C.把手中皮球由静止释放后,球将加速下落,说明力改变了皮球的惯性 D.一个运动的物体,如果不再受力了,它总会逐渐停下来,这说明:静止状态才是物体不受力时的“自然状态” 2.某卫星的发射过程如图所示,先将卫星从地面发射并从A点进入椭圆轨道1运行,然后在B点通过改变卫星的速度,让卫星进入预定圆形轨道2上运行.则下列说法正确的是( ) A.该卫星的发射速度一定小于第一宇宙速度7.9km/s B.该卫星的发射速度一定大于第一宇宙速度7.9km/s C.该卫星在轨道1上经过B点的加速度小于在轨道2上经过B点的加速度 D.该卫星在轨道1上经过B点的运行速度大于在轨道2上经过B点的运行速度 3.在如图所示的电路中,电源的负极接地,其电动势为E、内电阻为r,R1、R2为定值电阻,R3为滑动变阻器,C为电容器,、为理想电流表和电压表.在滑动变阻器滑动头P自a端向b端滑动的过程中,下列说法中正确的是( ) A.a点的电势降低 B.电压表示数变小 C.电流表示数变小 D.电容器C所带电荷量增多 4.如图甲所示,一质量为m=1kg的物体在水平拉力F的作用下沿水平面做匀速直线运动,从某时刻开始,拉力F随时间均匀减小,物体受到的摩擦力随时间变化的规律如图乙所示.则下列关于物体运动的说法中正确的是( ) A.t=5 s时物体刚好停止运动 B.物体在1~3 s内做匀减速直线运动 C.t=1 s时物体开始做加速度逐渐减小的减速运动 D.t=2 s时物体做减速运动的加速度大小为1 m/s2 5.下列说法正确的是( ) A.由卢瑟福的核式结构模型可知原子核直径的数量级为10﹣15m B.在核反应过程中亏损质量转变为能量 C. U→Th+He叫原子核的裂变 D.在核反应中,由比结合能较小的原子核变成比结合能较大的原子核才会释放核能 6.劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示.置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子,质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则 下列说法正确的是( ) A.质子被加速后的最大速度不可能超过2πfR B.质子离开回旋加速器时的最大动能与加速电压U成正比 C.质子第2次和第1次经过两D形盒间狭缝后轨道半径粒子出之比为 D.不改变磁感应强度B和交流电频率f,该回旋加速器也能用于α粒子加速 7.已知电势是标量,空间某点电势是各部分电荷在该点的电势的代数和;电场强度是矢量,空间某点电场强度是各部分电荷在该点的电场强度的矢量和.如图所示,三根绝缘均匀带电棒AB、BC、CA构成正三角形,AB的电荷量为+Qc,AC的电荷量为+Qb,BC的电荷量为+Qa,正三角形的中心O点的电势为φ1,场强大小为E1、方向指向A,当撤去 带电棒BC之后,测得其中心O点的电势为φ2,场强大小为E2、方向背离A,规定无穷远处电势为零,如果同时撤去带电棒AB和AC,则关于O点的场强大小和电势,下列说法正确的是( ) A.O点的场强大小为E1﹣E2 B.O点的场强大小为E1+E2 C.O点的电势φ1﹣φ2 D.O点的电势φ1+φ2 8.如图所示,长为L、内壁光滑的直管与水平地面成30°角固定放置.先将一质量为m的小球固定在管底,用一轻质细线将小球与质量为M(M=3m)的小物块相连,小物块悬挂于管口.现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变.(重力加速度为g)( ) A.小球运动的整个过程中,小球与小物块的系统机械能守恒 B.小球的最大速度为 C.小球从管口抛出时的速度大小为 D.小球平抛运动的水平位移等于 二、非选择题:包括必考题和选考题两部分.第22题~第32题为必考题,每个试题考生都必须作答.第33题~第38题为选考题,考生根据要求作答 9.某同学设计了描绘铅笔芯伏安特性曲线的实验,得到如下数据(I和U分别表示通过铅笔芯的电流和其两端的电压): U/V 0.00 0.40 0.80 1.20 1.60 2.00 I/A 0.00 0.10 0.18 0.28 0.38 0.48 实验室提供如下器材: A.电流表A1(量程0.6A,内阻约为0.1Ω) B.电流表A2(量程3A,内阻约为0.02Ω) C.电压表V1(量程3V,内阻3kΩ) D.电压表V2(量程15V,内阻15kΩ) E.滑动变阻器R1(阻值0~10Ω,额定电流2A) F.滑动变阻器R2(阻值0~2kΩ,额定电流0.5A) G.直流电源(电动势6V,内阻不计) H.单刀开关1个,导线若干 (1)除铅笔芯外,还需选用的器材有 (填选项前字母); (2)在虚线方框中画出实验电路图. 10.一个有一定厚度的圆盘,可以绕通过中心垂直于盘面的水平轴转动,圆盘加速转动时,角速度的增加量△ω与对应时间△t的比值定义为角加速度β.我们用电磁打点计时器、米尺、游标卡尺、纸带、复写纸来完成下述实验:(打点计时器所接交流电的频率为50Hz,A、B、C、D…为计数点,相邻两计数点间有四个点未画出) ①如图甲所示,将打点计时器固定在桌面上,将纸带的一端穿过打点计时器的限位孔,然后固定在圆盘的侧面,当圆盘转动时,纸带可以卷在圆盘侧面上; ②接通电源,打点计时器开始打点,启动控制装置使圆盘匀加速转动; ③经过一段时间,圆盘停止转动和打点,取下纸带,进行测量. (1)用20分度的游标卡尺测得圆盘的直径如图乙所示,圆盘的直径d为 cm; (2)由图丙可知,打下计数点D时,圆盘转动的角速度为 rad/s.(计算结果保留3位有效数字) (3)圆盘转动的角加速度大小为 rad/s2.(计算结果保留3位有效数字) 11.如图所示,甲车质量为2kg,静止在光滑水平面上,其顶部上表面光滑,右端放一个质量为1kg的小物体,乙车质量为4kg,以5m/s的速度向左运动,与甲车碰撞后甲车获得6m/s的速度,物体滑到乙车上,若乙车足够长,其顶部上表面与物体的动摩擦因数为0.2,则(g取10m/s2) (1)物体在乙车上表面滑行多长时间相对乙车静止; (2)物块最终距离乙车左端多大距离. 12.如图所示,在纸面内建立直角坐标系xOy,以第Ⅲ象限内的直线OM(与负x轴成45°角)和正y轴为界,在x<0的区域建立匀强电场,方向水平向左,场强大小E=0.32V/m;以直线OM和正x轴为界,在y<0的区域建立垂直纸面向里的匀强磁场,磁感应强度B=0.1T,一不计重力的带负电粒子,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度射入磁场,已知粒子的比荷为q/m=5×106C/kg,求: (1)粒子第一次经过磁场边界时的位置坐标 (2)粒子在磁场区域运动的总时间 (3)粒子最终离开电磁场区域时的位置坐标. 三、【物理--选修3-4】 13.一列简谐横波沿x轴正方向传播,t时刻波形图如图所示,此时波刚好传到P点,t+0.6s时刻的波形如图中的虚线所示,a、b、c、P、Q是介质中的质点,则以下说法正确的是 ( ) A.这列波的波速可能为50m/s B.质点a在这段时间内通过的路程一定小于30cm C.质点c在这段时间内通过的路程可能为60cm D.若T=0.8s,则当t+0.5s时刻,质点b、P的位移相同 E.若T=0.8s,当t+0.4s时刻开始计时,则质点c的振动方程为y=0.1sin(πt)(m) 14.如图所示为一巨大的玻璃容器,容器底部有一定的厚度,容器中装一定量的水,在容器底部有一单色点光源,已知水对该光的折射率为,玻璃对该光的折射率为1.5,容器底部玻璃的厚度为d,水的深度也为d.求: ①这种光在玻璃和水中传播的速度; ②水面形成的光斑的面积(仅考虑直接由光源发出的光线). 2016-2017学年湖北省武汉十一中高三(上)综合训练物理试卷(9) 参考答案与试题解析 一、选择题:本题共8小题,每小题6分.在每小题给出的四个选项中,第14~17题只有一项符合题目要求,第18~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分. 1.在物理学发展史上,伽利略、牛顿等许许多多科学家为物理学的发展做出了巨大贡献.以下选项中符合伽利略和牛顿的观点的是( ) A.人在沿直线加速前进的车厢内竖直向上跳起后,将落在起跳点的后方 B.两匹马拉车比一匹马拉车跑得快,这说明:物体受的力越大则速度就越大 C.把手中皮球由静止释放后,球将加速下落,说明力改变了皮球的惯性 D.一个运动的物体,如果不再受力了,它总会逐渐停下来,这说明:静止状态才是物体不受力时的“自然状态” 【考点】牛顿第一定律;惯性;牛顿第三定律. 【分析】惯性是物体的固有属性,它指的是物体能够保持原来的运动状态的一种性质,惯性大小与物体的质量有关,质量越大,惯性越大.同时要注意明确惯性的理解和应用. 【解答】解:A、人在沿直线加速前进的火车车厢内,竖直向上跳起后,由于惯性,人保持原来的速度,而车加速向前,故人落到起跳点的后方,故A正确; B、两匹马拉车比一匹马拉车跑得快,这说明物体受的力越大加速度就越大,不能说力越大,速度越大;故B错误; C、惯性大小与物体的质量有关,质量越大,惯性越大.与皮球受力无关;故C错误; D、一个运动的物体,如果不再受力了,它总会逐渐停下来,是因为物体受到了地面的摩擦力,如果不受力,物体会永远的运动下去,故D错误 故选:A. 2.某卫星的发射过程如图所示,先将卫星从地面发射并从A点进入椭圆轨道1运行,然后在B点通过改变卫星的速度,让卫星进入预定圆形轨道2上运行.则下列说法正确的是( ) A.该卫星的发射速度一定小于第一宇宙速度7.9km/s B.该卫星的发射速度一定大于第一宇宙速度7.9km/s C.该卫星在轨道1上经过B点的加速度小于在轨道2上经过B点的加速度 D.该卫星在轨道1上经过B点的运行速度大于在轨道2上经过B点的运行速度 【考点】人造卫星的加速度、周期和轨道的关系;万有引力定律及其应用. 【分析】卫星发射的速度大于7.9km/s,而小于11.2km/s,人造卫星的运行轨道就是椭圆; 卫星远离地球要克服引力做功,势能增大,由于只有引力做功,动能减小,机械能守恒; 【解答】解:A、B、卫星发射的速度大于7.9km/s,而小于11.2km/s,人造卫星的运行轨道就是椭圆,则A错误,B正确 C、在同一点引力相同,则加速度相同,则C错误 D、由轨道1在B点变为轨道2要增加速度,则D错误 故选:B 3.在如图所示的电路中,电源的负极接地,其电动势为E、内电阻为r,R1、R2为定值电阻,R3为滑动变阻器,C为电容器,、为理想电流表和电压表.在滑动变阻器滑动头P自a端向b端滑动的过程中,下列说法中正确的是( ) A.a点的电势降低 B.电压表示数变小 C.电流表示数变小 D.电容器C所带电荷量增多 【考点】电容;闭合电路的欧姆定律. 【分析】在滑动变阻器滑动头P自a端向b端滑动的过程中,变阻器在路电阻减小,外电阻减小,根据欧姆定律分析干路电流如何变化和电阻R1两端电压的变化,即可知道电压表读数的变化.电容器C的电压等于电阻R2两端的电压,分析并联部分电压的变化,即知道电容器的电压如何变化,根据干路电流与通过R2的电流变化情况,分析电流表的变化.a点的电势等于R2两端的电压. 【解答】解:在滑动变阻器滑动头P自a端向b端滑动的过程中,变阻器在路电阻减小,外电路总电阻减小,干路电流I增大,电阻R1两端电压增大,则电压表示数变大. 电阻R2两端的电压U2=E﹣I(R1+r),I增大,则U2变小,电容器板间电压变小,其带电量减小. 根据外电路中顺着电流方向电势降低,可知,a的电势大于零,a点的电势等于R2两端的电压,U2变小,则a点的电势降低,通过R2的电流I2减小,通过电流表的电流IA=I﹣I2,I增大,I2减小,则IA增大.即电流表示数变大.故A正确,BCD错误. 故选:A 4.如图甲所示,一质量为m=1kg的物体在水平拉力F的作用下沿水平面做匀速直线运动,从某时刻开始,拉力F随时间均匀减小,物体受到的摩擦力随时间变化的规律如图乙所示.则下列关于物体运动的说法中正确的是( ) A.t=5 s时物体刚好停止运动 B.物体在1~3 s内做匀减速直线运动 C.t=1 s时物体开始做加速度逐渐减小的减速运动 D.t=2 s时物体做减速运动的加速度大小为1 m/s2 【考点】牛顿第二定律;物体的弹性和弹力. 【分析】物体原来在水平力F作用下在水平地面上做匀速运动,从t=1s开始力F随时间均匀减小,物体先做减速运动,所受摩擦力为滑动摩擦力,当物体速度为零后,物体受静摩擦力.根据牛顿第二定律求出t=2s时物体做减速运动的加速度大小. 【解答】解:A、t=3s后,摩擦力随F的减小而减小,可知物体在t=3s时刚好停止,而且静摩擦力的大小等于拉力的大小,故A错误; BC、物体开始在F作用下做匀速直线运动,由图可知,滑动摩擦力的大小为4N,拉力随时间均匀减小后,物体开始做减速运动,即在1s时物体开始做减速运动,拉力减小,拉力小于滑动摩擦力,则合力增大,加速度增大,做变减速运动,即物体在1~3 s内做加速度逐渐增大的变减速直线运动.故B、C错误; D、t=2s时,拉力大小为 F=3N,则物块的加速度大小 a==m/s2=1m/s2,故D正确; 故选:D 5.下列说法正确的是( ) A.由卢瑟福的核式结构模型可知原子核直径的数量级为10﹣15m B.在核反应过程中亏损质量转变为能量 C. U→Th+He叫原子核的裂变 D.在核反应中,由比结合能较小的原子核变成比结合能较大的原子核才会释放核能 【考点】重核的裂变;原子核的结合能;轻核的聚变. 【分析】原子直径的数量级为10﹣10m,原子核直径的数量级为10﹣15m;质能方程E=mc2,知物体具有的能量与其质量成正比,由比结合能较小的原子核变成比结合能较大的原子核才会释放核能. 【解答】解:A、按卢瑟福的核式结构模型可知原子核直径的数量级为10﹣15m,故A正确; B、△E=△mc2说明质量和能量在量值上的联系,但决不等同于这两个量可以相互转变,故B错误; C、核反应U→Th+He中有α粒子生成,此式为α衰变,故C错误; D、在核反应中,由比结合能较小的原子核变成比结合能较大的原子核才会释放核能,故D正确; 故选:AD 6.劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示.置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生的质子,质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则 下列说法正确的是( ) A.质子被加速后的最大速度不可能超过2πfR B.质子离开回旋加速器时的最大动能与加速电压U成正比 C.质子第2次和第1次经过两D形盒间狭缝后轨道半径粒子出之比为 D.不改变磁感应强度B和交流电频率f,该回旋加速器也能用于α粒子加速 【考点】质谱仪和回旋加速器的工作原理. 【分析】回旋加速器运用电场加速磁场偏转来加速粒子,根据洛伦兹力提供向心力可以求出粒子的最大速度,从而求出最大动能.在加速粒子的过程中,电场的变化周期与粒子在磁场中运动的周期相等. 【解答】解:A、质子出回旋加速器的速度最大,此时的半径为R,则v=.所以最大速度不超过2πfR.故A正确. B、根据,知v=,则最大动能.与加速的电压无关.故B错误. C、粒子在加速电场中做匀加速运动,在磁场中做匀速圆周运动,根据知,质子第二次和第一次经过D形盒狭缝的速度比为,根据r=,则半径比为.故C正确. D、带电粒子在磁场中运动的周期与加速电场的周期相等,根据T=知,换用α粒子,粒子的比荷变化,周期变化,回旋加速器需改变交流电的频率才能加速α粒子.故D错误. 故选AC. 7.已知电势是标量,空间某点电势是各部分电荷在该点的电势的代数和;电场强度是矢量,空间某点电场强度是各部分电荷在该点的电场强度的矢量和.如图所示,三根绝缘均匀带电棒AB、BC、CA构成正三角形,AB的电荷量为+Qc,AC的电荷量为+Qb,BC的电荷量为+Qa,正三角形的中心O点的电势为φ1,场强大小为E1、方向指向A,当撤去 带电棒BC之后,测得其中心O点的电势为φ2,场强大小为E2、方向背离A,规定无穷远处电势为零,如果同时撤去带电棒AB和AC,则关于O点的场强大小和电势,下列说法正确的是( ) A.O点的场强大小为E1﹣E2 B.O点的场强大小为E1+E2 C.O点的电势φ1﹣φ2 D.O点的电势φ1+φ2 【考点】电势差与电场强度的关系;电势. 【分析】根据撤去前后棒在O点的电场强度大小与方向,结合矢量法则,即可求解O点的场强大小;而电势是标量,满足运算法则,从而即可求解. 【解答】解:AB、根据点电荷的电场强度公式,结合矢量合成法则,及几何知识,因场强大小为E1 、方向指向A,则有,AB、AC带电棒完全相同,则这两带电棒在O点产生合电场强度,与BC棒在O点的电场强度方向相反,才能使得在O点的电场强度指向A, 当撤去 带电棒BC之后,测得其中心O点场强大小为E2、方向背离A, 如果同时撤去带电棒AB和AC,则关于O点的场强大小E′=E1+E2,故B正确,A错误. CD、由于电势是标量,满足数学运算法则,正三角形的中心O点的电势为φ1,当撤去 带电棒BC之后,测得其中心O点的电势为φ2, 那么如果同时撤去带电棒AB和AC,则有:φ′+φ2=φ1 则关于O点的电势φ′=φ1﹣φ2,故C正确,D错误; 故选:BC. 8.如图所示,长为L、内壁光滑的直管与水平地面成30°角固定放置.先将一质量为m的小球固定在管底,用一轻质细线将小球与质量为M(M=3m)的小物块相连,小物块悬挂于管口.现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变.(重力加速度为g)( ) A.小球运动的整个过程中,小球与小物块的系统机械能守恒 B.小球的最大速度为 C.小球从管口抛出时的速度大小为 D.小球平抛运动的水平位移等于 【考点】机械能守恒定律. 【分析】只有重力或只有弹力做功,系统机械能守恒; 根据系统机械能守恒定律求出小球的最大速度. 根据速度位移公式求出物块落地时小球的速度,再根据牛顿第二定律求出木块落地后小球的加速度,运用速度位移公式求出小球离开管口的速度. 根据高度求出平抛运动的时间,再根据初速度和时间求出平抛运动的水平位移. 【解答】解:A、物块落地前,小球与物块组成的系统机械能守恒,物块落地过程中系统机械能有损失,机械能不守恒,故A错误; B、物块落地前瞬间小球速度最大,在该过程中系统机械能守恒,由机械能守恒定律得: MgLsin30°=(m+M) v12+mgsin30°Lsin30°, 已知:M=3m,解得:v1=,故B正确; C、设M落地时的速度大小为v,m射出管口时速度大小为v0,M落地后m的加速度为a0.根据牛顿第二定律有: ﹣mgsin30°=ma0,解得:a0=﹣g,由匀变速直线运动的速度位移公式得:v2=2aLsin30°,v02﹣v2=2a0L(1﹣sin30°), 解得:v0=,故C错误; D、小球离开管口后做平抛运动,水平方向:x=v0t,竖直方向:Lsin30°=gt2,解得水平位移:x=L,故D正确; 故选:BD. 二、非选择题:包括必考题和选考题两部分.第22题~第32题为必考题,每个试题考生都必须作答.第33题~第38题为选考题,考生根据要求作答 9.某同学设计了描绘铅笔芯伏安特性曲线的实验,得到如下数据(I和U分别表示通过铅笔芯的电流和其两端的电压): U/V 0.00 0.40 0.80 1.20 1.60 2.00 I/A 0.00 0.10 0.18 0.28 0.38 0.48 实验室提供如下器材: A.电流表A1(量程0.6A,内阻约为0.1Ω) B.电流表A2(量程3A,内阻约为0.02Ω) C.电压表V1(量程3V,内阻3kΩ) D.电压表V2(量程15V,内阻15kΩ) E.滑动变阻器R1(阻值0~10Ω,额定电流2A) F.滑动变阻器R2(阻值0~2kΩ,额定电流0.5A) G.直流电源(电动势6V,内阻不计) H.单刀开关1个,导线若干 (1)除铅笔芯外,还需选用的器材有 ACEGH (填选项前字母); (2)在虚线方框中画出实验电路图. 【考点】描绘小电珠的伏安特性曲线. 【分析】器材的选取需安全、精确.通过表格中电流、电压的数值确定选择电流表、电压表的量程.滑动变阻器采用分压式接法,选取总电阻较小的,测量误差较小. 测量铅笔芯伏安特性曲线电流电压需从0开始测起,所以滑动变阻器采用分压式接法.根据铅笔芯的电阻与电流表和电压表内阻比较,确定电流表的内外接. 【解答】解:(1)用伏安法测量,需电压表、电流表和滑动变阻器,因为所测电压和电流的最大值分别为2.00V和0.50A,从精确度考虑,电流表选取量程为0.6A,电压表量程选取3V的.为减小测量的误差,滑动变阻器选择0~10Ω的.还需要直流电源E(6V)、单刀开关1个,导线若干. 故选:ACEGH. (3)因为电压、电流需从0测起,所以滑动变阻器采用分压式接法.铅笔芯的电阻与电流表内阻相当,远小于电压表内阻,属于“小”电阻,采用电流表外接法.电路图如下图所示. 故答案为:(1)ACEGH;(2)如图所示. 10.一个有一定厚度的圆盘,可以绕通过中心垂直于盘面的水平轴转动,圆盘加速转动时,角速度的增加量△ω与对应时间△t的比值定义为角加速度β.我们用电磁打点计时器、米尺、游标卡尺、纸带、复写纸来完成下述实验:(打点计时器所接交流电的频率为50Hz,A、B、C、D…为计数点,相邻两计数点间有四个点未画出) ①如图甲所示,将打点计时器固定在桌面上,将纸带的一端穿过打点计时器的限位孔,然后固定在圆盘的侧面,当圆盘转动时,纸带可以卷在圆盘侧面上; ②接通电源,打点计时器开始打点,启动控制装置使圆盘匀加速转动; ③经过一段时间,圆盘停止转动和打点,取下纸带,进行测量. (1)用20分度的游标卡尺测得圆盘的直径如图乙所示,圆盘的直径d为 6.000 cm; (2)由图丙可知,打下计数点D时,圆盘转动的角速度为 13.0 rad/s.(计算结果保留3位有效数字) (3)圆盘转动的角加速度大小为 19.8 rad/s2.(计算结果保留3位有效数字) 【考点】探究小车速度随时间变化的规律. 【分析】(1)20分度的游标卡尺精确度为0.05mm,读数时先读大于1mm的整数部分,再读不足1mm的小数部分; (2)根据平均速度等于中间时刻瞬时速度求出D点的瞬时速度,然后根据v=ωr求解角速度; (3)用逐差法求解出加速度,再根据加速度等于角加速度与半径的乘积来计算角加速度,从而即可求解. 【解答】解:(1)整数部分为60mm,小数部分为零,由于精确度为0.05mm,故需写到0.001cm处, 故读数为6.000cm;因此直径为6.000cm; (2)打下计数点D时,速度为 vD===0.389m/s 故 ω==≈13.0rad/s (3)纸带运动的加速度为 a====0.59m/s2 由于ρ=, ω=, 故角加速度为ρ==≈19.8rad/s2; 故答案为:(1)6.000; (2)13.0; (3)19.8. 11.如图所示,甲车质量为2kg,静止在光滑水平面上,其顶部上表面光滑,右端放一个质量为1kg的小物体,乙车质量为4kg,以5m/s的速度向左运动,与甲车碰撞后甲车获得6m/s的速度,物体滑到乙车上,若乙车足够长,其顶部上表面与物体的动摩擦因数为0.2,则(g取10m/s2) (1)物体在乙车上表面滑行多长时间相对乙车静止; (2)物块最终距离乙车左端多大距离. 【考点】动量守恒定律;牛顿第二定律. 【分析】(1)甲、乙碰撞后动量守恒,求出碰后乙的速度,木块、向左做匀加速运动求出加速度,乙车和木块,动量守恒求出两者的共同速度,根据匀变速直线运动,速度时间关系即可求得时间; (2)木块向右运动过程中运用动能定理即可求解. 【解答】解:对甲、乙碰撞动量守恒m乙v0=m甲v1+m乙v2, 解得: 对木块、向左做匀加速运动a=μg=2m/s2 乙车和木块,动量守恒m乙v2=(m乙+m木)v 解得 所以滑行时间 (2)木块向右运动过程中运用动能定理得: )v2 解得:s=0.8m 答:(1)物体在乙车上表面滑行0.8s相对乙车静止; (2)物块最终距离乙车左端0.8m处. 12.如图所示,在纸面内建立直角坐标系xOy,以第Ⅲ象限内的直线OM(与负x轴成45°角)和正y轴为界,在x<0的区域建立匀强电场,方向水平向左,场强大小E=0.32V/m;以直线OM和正x轴为界,在y<0的区域建立垂直纸面向里的匀强磁场,磁感应强度B=0.1T,一不计重力的带负电粒子,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度射入磁场,已知粒子的比荷为q/m=5×106C/kg,求: (1)粒子第一次经过磁场边界时的位置坐标 (2)粒子在磁场区域运动的总时间 (3)粒子最终离开电磁场区域时的位置坐标. 【考点】带电粒子在匀强磁场中的运动;牛顿第二定律;向心力;带电粒子在匀强电场中的运动. 【分析】(1)由于从坐标原点O沿y轴负方向进入的磁场,入射点对应的半径就在x轴的负方向,又直线OM与x负轴成45°角,所以出射点对应的半径与x负轴垂直.故只要得出半径就可以知道粒子第一次经过磁场边界时的位置坐标. (2)粒子第一次出磁场后,在电场作用下会按原路,以与出磁场速度等大反向的速度回到磁场,进而再在磁场中做个圆周的圆周运动.故粒子在磁场区域运动的总时间为一个周期. (3)粒子第二次进入磁场时方向沿y轴正方向且与电场垂直,在电场力作用下做类平抛运动,由平抛规律可以得到坐标. 【解答】解:(1)粒子带负电,从O点沿y轴负方向射入磁场,沿顺时针方向做圆周运动. 第一次经过磁场边界上的一点(设为A点), 由得: , 所以,A点的坐标为:(﹣4×10﹣3m,﹣4×10﹣3m) (2)设粒子在磁场中做圆周运动的周期为T,第二次出磁场的点为C,第二次进入磁场的运动为圆周,粒子在磁场中运动的总时间为: 又 代入数据解得:T=1.265×10﹣5s, 所以t=1.265×10﹣5s (3)粒子从C点沿y轴正方向进入电场,做类平抛运动,则 , 由平抛规律得: △y=v0t1 代入数据解得:△y=0.2m y=△y﹣2r=0.2m﹣2×4×10﹣3m=0.192m 粒子离开电磁场时的位置坐标为:(0,0.192m). 答:(1)粒子第一次经过磁场边界时的位置坐标:(﹣4×10﹣3m,﹣4×10﹣3m) (2)粒子在磁场区域运动的总时间1.265×10﹣5s (3)粒子最终离开电磁场区域时的位置坐标(0,0.192m) 三、【物理--选修3-4】 13.一列简谐横波沿x轴正方向传播,t时刻波形图如图所示,此时波刚好传到P点,t+0.6s时刻的波形如图中的虚线所示,a、b、c、P、Q是介质中的质点,则以下说法正确的是 ( ) A.这列波的波速可能为50m/s B.质点a在这段时间内通过的路程一定小于30cm C.质点c在这段时间内通过的路程可能为60cm D.若T=0.8s,则当t+0.5s时刻,质点b、P的位移相同 E.若T=0.8s,当t+0.4s时刻开始计时,则质点c的振动方程为y=0.1sin(πt)(m) 【考点】横波的图象;波长、频率和波速的关系. 【分析】由图可知波的波长,而由两列波的波形图可得两波形相距的时间与周期的关系,则可得出波速的表达式;由波速可知周期的表达式,则可得出质点的路程及位移及质点的振动方程. 【解答】解:A、由图可知,波的波长为40m;两列波相距0.6s=(n+)T,故周期T=; 波速v==(4n+3)m/s=×(4n+3)m/s,(n=0,1,2,…); 当n=0时,当v=50m/s时,故A正确; B、质点a在平衡位置上下振动,振动的最少时间为T,故路程最小为3A即30cm,故B错误; C、c的路程为60cm说明c振动了1.5个周期,则可有: +1.5T=0.6,即+=0.6 解得:n=1时满足条件,故C正确; D、在 t 时刻,因波沿X轴正方向传播,所以此时质点P是向上振动的,经0.5秒后,P是正在向下振动(负位移),是经过平衡位置后向下运动0.1秒;而质点b是正在向上振动的(负位移),是到达最低点后向上运动0.1秒,因为0.2秒等于,可见此时两个质点的位移是相同的. 故D正确; E、当T=0.8s,当t+0.4s时刻时,质点c在上端最大位移处,据ω==rad/s=π rad/s,据图知A=0.1m,当从t+0.4s时刻时开始计时,则质点c的振动方程为x=0.1sin(πt+)m,故E错误. 故选:ACD. 14.如图所示为一巨大的玻璃容器,容器底部有一定的厚度,容器中装一定量的水,在容器底部有一单色点光源,已知水对该光的折射率为,玻璃对该光的折射率为1.5,容器底部玻璃的厚度为d,水的深度也为d.求: ①这种光在玻璃和水中传播的速度; ②水面形成的光斑的面积(仅考虑直接由光源发出的光线). 【考点】光的折射定律. 【分析】①由公式v=计算光在玻璃和水中的速度; ②画出光路图,光恰好在水和空气的分界面和玻璃与水的分界面发生全反射的临界角求出,然后结合几何关系求解半径. 【解答】解:①由v=得光在水中的速度为:v=c 光在玻璃中的速度为:v=c ②画出光路图如图所示: 光恰好在水和空气的分界面发生全反射时sinC==,在玻璃与水的分界面上,由=得: sinθ=, 则光斑的半径为:r=(+)d 面积为:s=π(+)2d2 答:①这种光在玻璃和水中传播的速度为c和c; ②水面形成的光斑的面积为π(+)2d2. 2017年3月3日查看更多