2018版高考文科数学(北师大版)一轮文档讲义:章2-6对数与对数函数

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018版高考文科数学(北师大版)一轮文档讲义:章2-6对数与对数函数

第6讲 对数与对数函数 最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,的对数函数的图像;3.体会对数函数是一类重要的函数模型.4.了解指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数.‎ 知 识 梳 理 ‎1.对数的概念 一般地,如果a(a>0,a≠1)的b次幂等于N,即ab=N,那么数b叫作以a为底N的对数,记作logaN=b.其中a叫作对数的底数,N叫作真数.‎ ‎2.对数的性质、换底公式与运算性质 ‎(1)对数的性质:①alogaN=N;②logaab=b(a>0,且a≠1)‎ ‎(2)对数的运算法则 如果a>0且a≠1,M>0,N>0,那么 ‎①loga(MN)=logaM+logaN;‎ ‎②loga=logaM-logaN;‎ ‎③logaMn=nlogaM(n∈R);‎ ‎④loga mMn=logaM(m,n∈R,且m≠0).‎ ‎(3)对数的重要公式 ‎①换底公式:logbN=(a,b均大于零且不等于1);‎ ‎②logab=,推广logab·logbc·logcd=logad.‎ ‎3.对数函数及其性质 ‎(1)概念:函数y=logax(a>0,且a≠1)叫作对数函数,其中x是自变量,函数的定义域是(0,+∞).‎ ‎(2)对数函数的图像与性质 a>1‎ ‎01时,y>0;‎ 当01时,y<0;‎ 当00‎ 在(0,+∞)上是增函数 在(0,+∞)上是减函数 ‎4.反函数 指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数,它们的图像关于直线y=x对称.‎ 诊 断 自 测 ‎1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 ‎(1)log2x2=2log2x.(  )‎ ‎(2)函数y=log2(x+1)是对数函数(  )‎ ‎(3)函数y=ln与y=ln(1+x)-ln(1-x)的定义域相同.(  )‎ ‎(4)当x>1时,若logax>logbx,则a0,且a≠1)的图像如图,则下列结论成立的是(  )‎ A.a>1,c>1 B.a>1,01 D.00,即logac>0,所以0b>c B.a>c>b C.c>b>a D.c>a>b 解析 ∵01.‎ ‎∴c>a>b.‎ 答案 D ‎4.(2015·浙江卷)计算:log2=________;2log23+log43=________.‎ 解析 log2=log2-log22=-1=-;‎ ‎2log23+log43=2log23·2log43=3×2log43=3×2log2=3.‎ 答案 - 3 ‎5.若loga<1(a>0,且a≠1),则实数a的取值范围是________.‎ 解析 当01时,loga1.‎ 答案 ∪(1,+∞)‎ 考点一 对数的运算                  ‎ ‎【例1】 (1)设2a=5b=m,且+=2,则m等于(  )‎ A. B.10 C.20 D.100‎ ‎(2)计算:÷100=________.‎ 解析 (1)由已知,得a=log2m,b=log5m,‎ 则+=+=logm2+logm5=logm10=2.‎ 解得m=.‎ ‎(2)原式=(lg 2-2-lg 52)×100=lg×10=lg 10-2×10=-2×10=-20.‎ 答案 (1)A (2)-20‎ 规律方法 (1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.‎ ‎(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.‎ ‎(3)ab=N⇔b=logaN(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.‎ ‎【训练1】 (1)(2017·北京东城区综合练习)已知函数f(x)=则f(2+log23)的值为(  )‎ A.24 B.16 C.12 D.8‎ ‎(2)(2015·安徽卷)lg+2lg 2--1=________.‎ 解析 (1)因为3<2+log23<4,所以f(2+log23)=f(3+log23)=23+log23=8×2log23=24.‎ ‎(2)lg+2lg 2--1=lg 5-lg 2+2lg 2-2=lg 5+lg 2-2=lg 10-2=-1.‎ 答案 (1)A (2)-1‎ 考点二 对数函数的图像及应用 ‎【例2】 (1)(2017·郑州一模)若函数y=a|x|(a>0,且a≠1)的值域为{y|y≥1},则函数y=loga|x|的图像大致是(  )‎ ‎(2)(2017·宝鸡调研)已知函数f(x)=且关于x的方程f(x)+x-a=0有且只有一个实根,则实数a的取值范围是________.‎ 解析 (1)由于y=a|x|的值域为{y|y≥1},‎ ‎∴a>1,则y=logax在(0,+∞)上是增函数,‎ 又函数y=loga|x|的图像关于y轴对称.‎ 因此y=loga|x|的图像应大致为选项B.‎ ‎(2)‎ 如图,在同一坐标系中分别作出y=f(x)与y=-x+a的图像,其中a表示直线在y轴上截距.‎ 由图可知,当a>1时,直线y=-x+a与y=log2x只有一个交点.‎ 答案 (1)B (2)a>1‎ 规律方法 (1)在识别函数图像时,要善于利用已知函数的性质、函数图像上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.‎ ‎(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.‎ ‎【训练2】 (1)函数y=2log4(1-x)的图像大致是(  )‎ ‎(2)当01时,不符合题意,舍去.‎ 所以实数a的取值范围是.‎ 答案 (1)C (2)B 考点三 对数函数的性质及应用(多维探究)‎ 命题角度一 比较对数值的大小 ‎【例3-1】 (2016·全国Ⅰ卷)若a>b>0,0cb 解析 由y=xc与y=cx的单调性知,C、D不正确.‎ ‎∵y=logcx是减函数,得logca0且a≠1,故必有a2+1>2a,‎ 又loga(a2+1)1,∴a>.综上,a∈.‎ 答案 C 命题角度三 对数型函数的性质 ‎【例3-3】 已知函数f(x)=loga(3-ax).‎ ‎(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;‎ ‎(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.‎ 解 (1)∵a>0且a≠1,设t(x)=3-ax,‎ 则t(x)=3-ax为减函数,‎ x∈[0,2]时,t(x)的最小值为3-2a,‎ 当x∈[0,2]时,f(x)恒有意义,‎ 即x∈[0,2]时,3-ax>0恒成立.‎ ‎∴3-2a>0.∴a<.‎ 又a>0且a≠1,∴a∈(0,1)∪.‎ ‎(2)t(x)=3-ax,∵a>0,‎ ‎∴函数t(x)为减函数.‎ ‎∵f(x)在区间[1,2]上为减函数,∴y=logat为增函数,‎ ‎∴a>1,x∈[1,2]时,t(x)最小值为3-2a,f(x)最大值为f(1)=loga(3-a),‎ ‎∴即 故不存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1.‎ 规律方法 (1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.‎ ‎(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.‎ ‎(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件.‎ ‎【训练3】 (1)设a=log32,b=log52,c=log23,则(  )‎ A.a>c>b B.b>c>a C.c>b>a D.c>a>b ‎(2)已知函数f(x)=loga(8-ax)(a>0,且a≠1),若f(x)>1在区间[1,2]上恒成立,则实数a的取值范围是________.‎ 解析 (1)a=log32log22=1,‎ 所以,c最大.‎ 由1,即a>b,‎ 所以c>a>b.‎ ‎(2)当a>1时,f(x)=loga(8-ax)在[1,2]上是减函数,由f(x)>1在区间[1,2]上恒成立,‎ 则f(x)min=loga(8-2a)>1,‎ 解之得11在区间[1,2]上恒成立,‎ 则f(x)min=loga(8-a)>1,且8-2a>0.‎ ‎∴a>4,且a<4,故不存在.‎ 综上可知,实数a的取值范围是.‎ 答案 (1)D (2) ‎[思想方法]‎ ‎1.对数值取正、负值的规律 当a>1且b>1或00;‎ 当a>1且01时,logab<0.‎ ‎2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.‎ ‎3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.‎ ‎4.多个对数函数图像比较底数大小的问题,可通过比较图像与直线y=1交点的横坐标进行判定.‎ ‎[易错防范]‎ ‎1.在对数式中,真数必须是大于0的,所以对数函数y=logax的定义域应为(0,+∞).对数函数的单调性取决于底数a与1的大小关系,当底数a与1的大小关系不确定时,要分01两种情况讨论.‎ ‎2.在运算性质logaMα=αlogaM中,要特别注意条件,在无M>0的条件下应为logaMα=αloga|M|(α∈N+,且α为偶数).‎ ‎3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.‎ 基础巩固题组 ‎(建议用时:40分钟)                   ‎ 一、选择题 ‎1.(2015·四川卷)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的(  )‎ A.充分必要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析 因为y=log2x在(0,+∞)上单调递增,所以当a>b>1时,有log2a>log2b>log21=0;‎ 当log2a>log2b>0=log21时,有a>b>1.‎ 答案 A ‎2.(2017·上饶模拟)已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是(  )‎ A.a=bc C.ab>c 解析 因为a=log23+log2=log23=log23>1,b=log29-log2=log23=a,c=log320,且a≠1)的图像如图所示,则下列函数图像正确的是(  )‎ 解析 由题意y=logax(a>0,且a≠1)的图像过(3,1)点,可解得a=3.选项A中,y=3-x=x,显然图像错误;选项B中,y=x3,由幂函数图像可知正确;选项C中,y=(-x)3=-x3,显然与所画图像不符;选项D中,y=log3(-x)的图像与y=log3x的图像关于y轴对称,显然不符.故选B.‎ 答案 B ‎4.已知函数f(x)=则f(f(1))+f的值是(  )‎ A.5 B.3 C.-1 D. 解析 由题意可知f(1)=log21=0,‎ f(f(1))=f(0)=30+1=2,‎ f=+1=3log32+1=2+1=3,‎ 所以f(f(1))+f=5.‎ 答案 A ‎5.(2016·浙江卷)已知a,b>0且a≠1,b≠1,若logab>1,则(  )‎ A.(a-1)(b-1)<0 B.(a-1)(a-b)>0‎ C.(b-1)(b-a)<0 D.(b-1)(b-a)>0‎ 解析 ∵a>0,b>0且a≠1,b≠1.‎ 由logab>1得loga>0.‎ ‎∴a>1,且>1或0a>1或00.‎ 答案 D 二、填空题 ‎6.设f(x)=log是奇函数,则使f(x)<0的x的取值范围是________.‎ 解析 由f(x)是奇函数可得a=-1,‎ ‎∴f(x)=lg,定义域为(-1,1).‎ 由f(x)<0,可得0<<1,∴-10,且a≠1)的值域是[4,+∞),则实数a的取值范围是________.‎ 解析 当x≤2时,f(x)≥4;又函数f(x)的值域为[4,+∞),所以解1<a≤2,所以实数a的取值范围为(1,2].‎ 答案 (1,2]‎ 三、解答题 ‎9.设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.‎ ‎(1)求a的值及f(x)的定义域;‎ ‎(2)求f(x)在区间上的最大值.‎ 解 (1)∵f(1)=2,‎ ‎∴loga4=2(a>0,a≠1),‎ ‎∴a=2.‎ 由得-1<x<3,‎ ‎∴函数f(x)的定义域为(-1,3).‎ ‎(2)f(x)=log2(1+x)+log2(3-x)‎ ‎=log2(1+x)(3-x)=log2[-(x-1)2+4],‎ ‎∴当x∈(-1,1]时,f(x)是增函数;‎ 当x∈(1,3)时,f(x)是减函数,‎ 故函数f(x)在上的最大值是f(1)=log24=2.‎ ‎10.(2016·榆林月考)已知函数f(x)是定义在R上的偶函数,且f(0)=0,当x>0时,f(x)=x.‎ ‎(1)求函数f(x)的解析式;‎ ‎(2)解不等式f(x2-1)>-2.‎ 解 (1)当x<0时,-x>0,则f(-x)=(-x).‎ 因为函数f(x)是偶函数,所以f(-x)=f(x)=(-x),‎ 所以函数f(x)的解析式为 ‎(2)因为f(4)=4=-2,f(x)是偶函数,‎ 所以不等式f(x2-1)>-2转化为f(|x2-1|)>f(4).‎ 又因为函数f(x)在(0,+∞)上是减函数,‎ 所以|x2-1|<4,解得-p D.p=r>q 解析 ∵0,‎ 又∵f(x)=ln x在(0,+∞)上为增函数,‎ ‎∴f>f(),即q>p.‎ 又r=(f(a)+f(b))=(ln a+ln b)=ln=p,‎ 故p=rb>1,若logab+logba=,ab=ba,则a=________,b=________.‎ 解析 ∵logab+logba=logab+=,‎ ‎∴logab=2或.‎ ‎∵a>b>1,∴logab0,且a≠1)的最大值是1,最小值是-,求a的值.‎ 解 由题意知f(x)=(logax+1)(logax+2)‎ ‎=(logx+3logax+2)‎ ‎=2-.‎ 当f(x)取最小值-时,logax=-.‎ 又∵x∈[2,8],∴a∈(0,1).‎ ‎∵f(x)是关于logax的二次函数,‎ ‎∴函数f(x)的最大值必在x=2或x=8时取得.‎ 若2-=1,则a=2,‎ 此时f(x)取得最小值时,x==∉[2,8],舍去.‎ 若2-=1,则a=,‎ 此时f(x)取得最小值时,x=-=2∈[2,8],‎ 符合题意,∴a=.‎ 特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.‎
查看更多

相关文章

您可能关注的文档