2012高考数学总复习练习函数及其表示

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2012高考数学总复习练习函数及其表示

第二单元 第一节 一、选择题 ‎1.下列各组函数f(x)与g(x)的图象相同的是(  )‎ A.f(x)=x,g(x)=()2‎ B.f(x)=x2,g(x)=(x+1)2‎ C.f(x)=x,g(x)=elnx D.f(x)=|x|,g(x)= ‎【解析】 A、C定义域不同,B对应关系不同,故选D.‎ ‎【答案】 D ‎2.函数y=f(x)的图象与直线x=a的交点数是(  )‎ A.1 B.0 C.0或1 D.可能多于1‎ ‎【解析】 设函数的定义域为I,若a∈I,则一个交点,若a∉I则无交点.‎ ‎【答案】 C ‎3.若f(x)=则f(-3)的值为(  )‎ A.2 B.8 C. D. ‎【解析】 f(-3)=f(-1)=f(1)=f(3)=2-3=.‎ ‎【答案】 C ‎4.图中图象所表示的函数解析式为(  )‎ A.y=|x-1|(0≤x≤2)‎ B.y=-|x-1|(0≤x≤2)‎ C.y=-|x-1|(0≤x≤2)‎ D.y=1-|x-1|(0≤x≤2)‎ ‎【解析】 当0≤x≤1时,y=x,‎ 当1≤x≤2时,y=-x+3,‎ ‎∴当0≤x≤2时,y=-|x-1|.‎ ‎【答案】 B ‎5.水池有2个进水口,1个出水口,每个水口进出水速度如下图(1)(2)所示,某天0点到6点,该水池的蓄水量如下图(3)所示(至少打开一个水口).‎ 给出以下三个论断:‎ ‎①0点到3点只进水不出水;‎ ‎②3点到4点不进水只出水;‎ ‎③4点到6点不进水不出水.‎ 其中一定正确的论断是(  )‎ A.① B.①② C.①③ D.①②③‎ ‎【解析】 由4点时水池水量为5可知打开一个进水口,故②不正确;4点到6点水池水量不变,也可能三个水口都打开,故③不正确.故选A.‎ ‎【答案】 A ‎6.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有(  )‎ A.1个 B.2个 C.3个 D.4个 ‎【解析】 由x2+1=1得x=0,由x2+1=3得x=±,∴函数的定义域可以是{0,},{0,-},{0,,-}共3个.‎ ‎【答案】 C ‎7.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)=(  )‎ A.2 B.3 C.6 D.9‎ ‎【解析】 f(0)=0,f(2)=f(1)+f(1)+2=6,‎ f(3)=f(2)+f(1)+4=12,‎ f(0)=f(3)+f(-3)-18=0,f(-3)=6.‎ ‎【答案】 C 二、填空题 ‎8.已知一次函数f(x)满足f[f(x)]=3x+2,则f(x)=________________________________________________________________________.‎ ‎【解析】 令f(x)=ax+b,‎ 则f[f(x)]=af(x)+b=a(ax+b)+b=3x+2.‎ ‎∴∴或 ‎【答案】 x+-1或-x--1‎ ‎9.已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点________.‎ ‎【解析】 ∵f(x+1)过点(3,2),即f(4)=2,‎ ‎∴f(x)过点(4,2),其关于x轴对称点(4,-2).‎ ‎【答案】 (4,-2)‎ ‎10.已知f(x+1)=则f·f(-9)=________.‎ ‎【解析】 f=sin=1,‎ f(-9)=f(-10+1)=lg10=1,‎ ‎∴f·f(-9)=1.‎ ‎【答案】 1‎ 三、解答题 ‎11.(精选考题·全国高考Ⅰ卷·改编)已知函数 f(x)=若a、b、c互不相等,且 f(a)=f(b)=f(c),求abc的取值范围.‎ ‎【解析】 f(x)图象如图所示,‎ 不妨设a<b<c,‎ 且f(a)=f(b)=f(c)=k,‎ 则0<k<1.‎ 由|lgx|=k,得x=10±k,∴ab=10k·10-k=1,‎ 由-x+6=k,得x=12-2k,∴abc=12-2k,‎ ‎∴10<abc<12.‎ ‎12.某市出租车起步价为5元,起步价内最大行驶里程为3 km,以后3 km内每1 ‎ km加收1.5元,再超过3 km后,每1 km加收2元.(不足1 km按1 km计算)‎ ‎(1)写出出租费用y关于行驶里程x的函数关系式;‎ ‎(2)作出函数图象,并求行驶7.5 km时的出租费用.‎ ‎【解析】 (1)令[x]表示不小于x的最小整数,‎ 当0<x≤3时,y=5;‎ 当3<x≤6时,y=5+1.5([x]-3);‎ 当x>6时,y=9.5+2([x]-6).‎ ‎∴y= ‎(2)当x=7.5时,‎ y=2[7.5]-2.5=2×8-2.5=13.5(元).‎ 函数图象如图所示.‎ 高考资源网(www.ks5u.com)‎ www.ks5u.com 来源:高考资源网 版权所有:高考资源网(www.k s 5 u.com)‎ ‎ ‎
查看更多

相关文章

您可能关注的文档