- 2024-01-15 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级下数学课件2-2 平行四边形的对角线的性质_湘教版
第2章 四边形 第2课时 平行四边形的对角线的性质 第2章 四边形 2.2 平行四边形 通过对平行四边形对角线的作图与测量,掌握平行四边形对角 线互相平分的性质. 目标 掌握平行四边形对角线的性质并能计算或证明 2.2 平行四边形 例1 教材例3针对训练 如图2-2-6,已知▱ ABCD的对角线AC, BD相交于点O,AC=12,BD=18,且△AOB的周长l=23,求AB的 长. 图2-2-6 2.2 平行四边形 2.2 平行四边形 【归纳总结】 平行四边形对角线性质的作用 (1)平行四边形的两条对角线将平行四边形分成四个小三角形, 且有公共顶点无公共边的两个小三角形全等. (2)在解决平行四边形的有关问题时,除了考虑通过边、角关 系证明全等以外,有时连接对角线,利用对角线的性质证明 能起到事半功倍的作用. 2.2 平行四边形 例2 教材例4针对训练 如图2-2-7,在▱ ABCD中,O是对角线 AC,BD的交点,BE⊥AC,DF⊥AC,垂足分别为E,F.那么OE与 OF是否相等?为什么? 图2-2-7 2.2 平行四边形 [解析] 根据平行四边形的性质得OB=OD,根据BE⊥AC,DF⊥AC,得 ∠OEB=∠OFD=90°,结合对顶角相等得△OEB≌△OFD,从而证明OE= OF. 解:OE=OF.理由如下: ∵四边形ABCD是平行四边形,∴OB=OD. ∵BE⊥AC,DF⊥AC, ∴∠OEB=∠OFD=90°. 又∵∠BOE=∠DOF,∴△BOE≌△DOF, ∴OE=OF. 2.2 平行四边形 【归纳总结】 平行四边形对角线的性质往往与等腰三角形、 全等三角形联系在一起,证明线段相等,角相等或线段的平行、 垂直的位置关系. 知识点 平行四边形对角线的性质 小结 2.2 平行四边形 性质:平行四边形的对角线____________.互相平分 反思 2.2 平行四边形 请你判断下面的证明是否有错误,如果有错误,请你指出错误 之处,并写出正确的证明过程. 已知:如图2-2-8所示,在▱ ABCD中,AC,BD相交于点O, OE⊥AD于点E,OF⊥BC于点F.求证:OE=OF. 证明:∵四边形ABCD是平行四边形,∴OA=OC. ∵OE⊥AD,OF⊥BC,垂足分别为E,F, ∴∠AEO=∠CFO=90°. 又∵∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF. 图2-2-8 2.2 平行四边形 解:证明过程有错误.因为题中未明确指出点E,O,F在同一条直线上,因此 不能肯定∠AOE与∠COF是对顶角,无法得出∠AOE=∠COF. 证明:∵四边形ABCD是平行四边形,∴OA=OC. ∵AD∥BC,∴∠EAO=∠FCO. ∵OE⊥AD,OF⊥BC,垂足分别为E,F, ∴∠AEO=∠CFO=90°,∴△AOE≌△COF, ∴OE=OF.查看更多