数学(理)(附加题)卷·2019届天津市静海一中高二上学期期末终结性检测(2018-02)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

数学(理)(附加题)卷·2019届天津市静海一中高二上学期期末终结性检测(2018-02)

静海一中2017-2018第一学期高二理科数学(附加题)‎ ‎ 期末终结性检测试卷 ‎1.(15分)椭圆中心为坐标原点O,对称轴为坐标轴,且过M(2,) ,N(,1)两点, ‎ ‎(I)求椭圆的方程;‎ ‎(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。‎ ‎2.(15分)在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于两点,线段的中点为,射线交椭圆于点,交直线于点.‎ ‎(Ⅰ)求的最小值;‎ ‎(Ⅱ)若,‎ (i) 求证:直线过定点;‎ ‎(ii)试问点能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由. ‎ 小卷1、椭圆过M(2,) ,N(,1)两点,O为坐标原点,‎ ‎(I)求椭圆的方程;‎ ‎(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。‎ 答案:略 ‎2)在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点.‎ ‎(Ⅰ)求的最小值;(Ⅱ)若∙,(i)求证:直线过定点;‎ ‎(ii)试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.‎ ‎【解析】(Ⅰ)由题意:设直线,‎ 由消y得:,设A、B,AB的中点E,则由韦达定理得: =,即,,所以中点E的坐标为E,因为O、E、D三点在同一直线上,所以,即,解得 ‎,所以=,当且仅当时取等号,即的最小值为2.‎ ‎(Ⅱ)(i)证明:由题意知:n>0,因为直线OD的方程为,所以由得交点G的纵坐标为,又因为,,且∙,所以,又由(Ⅰ)知: ,所以解得,所以直线的方程为,即有,令得,y=0,与实数k无关,所以直线过定点(-1,0).‎ ‎(ii)假设点,关于轴对称,则有的外接圆的圆心在x轴上,又在线段AB的中垂线上,‎ 由(i)知点G(,所以点B(,又因为直线过定点(-1,0),所以直线的斜率为,又因为,所以解得或6,又因为,所以舍去,即,此时k=1,m=1,E,AB的中垂线为2x+2y+1=0,圆心坐标为,G(,圆半径为,圆的方程为.综上所述, 点,关于轴对称,此时的外接圆的方程为
查看更多

相关文章

您可能关注的文档