2012年高考数学真题分类汇编K 概率 (理科)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2012年高考数学真题分类汇编K 概率 (理科)

K 概率 K1 随事件的概率 ‎19.K1、K5、K6[2012·浙江卷] 已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.‎ ‎(1)求X的分布列;‎ ‎(2)求X的数学期望E(X).‎ ‎19.解:(1)由题意得X取3,4,5,6,且 P(X=3)==,‎ P(X=4)==,‎ P(X=5)==,‎ P(X=6)==.‎ 所以X的分布列为 X ‎3‎ ‎4‎ ‎5‎ ‎6‎ P ‎(2)由(1)知 E(X)=3·P(X=3)+4·P(X=4)+5·P(X=5)+6·P(X=6)=.‎ K2 古典概型 ‎15.K2[2012·重庆卷] 某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).‎ ‎15. [解析] 6节课共有A=720种排法,相邻两节文化课间最多间隔1节艺术课排法分两类:‎ ‎(1)两节相邻文化课之间没有艺术课间隔:可将三节文化课捆绑为一个元素,然后再与另三节艺术课进行全排列,排法有AA=144种;‎ ‎(2)三节文化课间都有1节艺术课间隔:有“文艺文艺文艺”与“艺文艺文艺文” 两种形式,其排法有‎2AA=72种;‎ ‎(3)三节文化课中有两节之间有一节艺术课,而另一节文化课与前两节文化课之一无间隔,可先对文化课进行全排,然后从3节艺术课选一节放入排好的3节文化课之间,再将此4节课看作一个元素与余下的2节艺术课进行全排,其排法有:ACCA=216种.‎ 综上可知,相邻两节文化课间最多间隔1节艺术课排法有144+72+216=432种,‎ 所以课表上的相邻两节文化课之间最多间隔1节艺术课的概率为=.‎ ‎11.K2[2012·上海卷] 三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).‎ ‎11. [解析] 考查古典概率和组合问题,关键是把情况分析清楚,不要漏掉或者重复情况.‎ 所有的可能情况有CCC,满足条件有且仅有两人选择的项目完全相同的情况有 CCC,由古典概率公式得P==.‎ ‎6.K2[2012·江苏卷] 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.‎ ‎6. [解析] 本题考查等比数列的通项公式的运用以及古典概型的求解.解题突破口为等比数列通项公式的运用.‎ 由通项公式an=1×(-3)n-1得,满足条件的数有1,-3,-33,-35,-37,-39,共6个,从而所求概率为P=.‎ ‎16.K2、K6[2012·福建卷] 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:‎ 品牌 甲 乙 首次出现故 障时间x(年)‎ ‎0<x≤1‎ ‎1<x≤2‎ x>2‎ ‎0<x≤2‎ x>2‎ 轿车数量(辆)‎ ‎2‎ ‎3‎ ‎45‎ ‎5‎ ‎45‎ 每辆利润(万元)‎ ‎1‎ ‎2‎ ‎3‎ ‎1.8‎ ‎2.9‎ 将频率视为概率,解答下列问题:‎ ‎(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;‎ ‎(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;‎ ‎(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.‎ ‎16.解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A.‎ 则P(A)==.‎ ‎(2)依题意得,X1的分布列为 ‎ X1‎ ‎1‎ ‎2‎ ‎3‎ P X2的分布列为 X2‎ ‎1.8‎ ‎2.9‎ P ‎(3)由(2)得,E(X1)=1×+2×+3×==2.86(万元),‎ E(X2)=1.8×+2.9×=2.79(万元).‎ 因为E(X1)>E(X2),所以应生产甲品牌轿车.‎ ‎7.K2、J1[2012·广东卷] 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是(  )‎ A. B. C. D. ‎7.D [解析] 本题考查利用古典概型求解概率以及两个基本计数原理,解决本题的突破口是首先确定符合条件的两位数的所有个数,再找到个位是0的个数,利用公式求解,‎ 设个位数与十位数分别为y,x,则如果两位数之和是奇数,则x,y分别为一奇数一偶数:‎ 第一类x为奇数,y为偶数共有:C×C=25;‎ 另一类x为偶数,y为奇数共有:C×C=20.‎ 两类共计45个,其中个位数是0,十位数是奇数的两位数有10,30,50,70,90这5个数,所以个位数是0的概率为:P(A)==.‎ K3 几何概型 ‎10.K3[2012·辽宁卷] 在长为‎12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于‎32 cm2的概率为(  )‎ A. B. C. D. ‎10.C [解析] 本小题主要考查几何概型.解题的突破口为弄清是长度之比、面积之比还是体积之比.‎ 令AC=x,CB=12-x,这时的面积为S=x(12-x),根据条件S=x(12-x)<32⇒x2-12x+32>0⇒02)=0.5;‎ X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,‎ 所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)‎ ‎=0.1×0.9+0.4=0.49;‎ X=2对应两个顾客办理业务所需的时间均为1分钟,‎ 所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01.‎ 所以X的分布列为 X ‎0‎ ‎1‎ ‎2‎ P ‎0.5‎ ‎0.49‎ ‎0.01‎ EX=0×0.5+1×0.49+2×0.01=0.51.‎ 解法二:X所有可能的取值为0,1,2.‎ X=0对应第一个顾客办理业务所需的时间超过2分钟,‎ 所以P(X=0)=P(Y>2)=0.5;‎ X=2对应两个顾客办理业务所需的时间均为1分钟,‎ 所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;‎ P(X=1)=1-P(X=0)-P(X=2)=0.49.‎ 所以X的分布列为 X ‎0‎ ‎1‎ ‎2‎ P ‎0.5‎ ‎0.49‎ ‎0.01‎ EX=0×0.5+1×0.49+2×0.01=0.51.‎ ‎19.I2、I4、K6、K8[2012·辽宁卷] 电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.‎ 图1-6‎ 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.‎ ‎(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?‎ 非体育迷 体育迷 合计 男 女 ‎10‎ ‎55‎ 合计 ‎(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中.采用随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).‎ 附:χ2=,‎ P(χ2≥k)‎ ‎0.05‎ ‎0.01‎ k ‎3.841‎ ‎6.635‎ ‎19.解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:‎ 非体育迷 体育迷 合计 男 ‎30‎ ‎15‎ ‎45‎ 女 ‎45‎ ‎10‎ ‎55‎ 合计 ‎75‎ ‎25‎ ‎100‎ 将2×2列联表中的数据代入公式计算,得 χ2===≈3.030.‎ 因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.‎ ‎(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为.‎ 由题意X~B,从而X的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P E(X)=np=3×=.‎ D(X)=np(1-p)=3××=.‎ ‎18.K6、B10[2012·课标全国卷] ‎ 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.‎ ‎(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;‎ ‎(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:‎ 日需求量n ‎14‎ ‎15‎ ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ 频数 ‎10‎ ‎20‎ ‎16‎ ‎16‎ ‎15‎ ‎13‎ ‎10‎ 以100天记录的各需求量的频率作为各需求量发生的概率.‎ ‎①若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;‎ ‎②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.‎ ‎18.解:(1)当日需求量n≥16时,利润y=80.‎ 当日需求量n<16时,利润y=10n-80.‎ 所以y关于n的函数解析式为 y=(n∈N).‎ ‎(2)①X可能的取值为60,70,80,并且 P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7.‎ X的分布列为 X ‎60‎ ‎70‎ ‎80‎ P ‎0.1‎ ‎0.2‎ ‎0.7‎ X的数学期望为 EX=60×0.1+70×0.2+80×0.7=76.‎ X的方差为 DX=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.‎ ‎②答案一:‎ 花店一天应购进16枝玫瑰花.理由如下:‎ 若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为 Y ‎55‎ ‎65‎ ‎75‎ ‎85‎ P ‎0.1‎ ‎0.2‎ ‎0.16‎ ‎0.54‎ Y的数学期望为 EY=55×0.1+65×0.2+75×0.16+85×0.54=76.4.‎ Y的方差为 DY=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54‎ ‎=112.04.‎ 由以上的计算结果可以看出,DX2)=0.5;‎ X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,‎ 所以P(X=1)=P(Y=1)P(Y>1)+P(Y=2)‎ ‎=0.1×0.9+0.4=0.49;‎ X=2对应两个顾客办理业务所需的时间均为1分钟,‎ 所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01.‎ 所以X的分布列为 X ‎0‎ ‎1‎ ‎2‎ P ‎0.5‎ ‎0.49‎ ‎0.01‎ EX=0×0.5+1×0.49+2×0.01=0.51.‎ 解法二:X所有可能的取值为0,1,2.‎ X=0对应第一个顾客办理业务所需的时间超过2分钟,‎ 所以P(X=0)=P(Y>2)=0.5;‎ X=2对应两个顾客办理业务所需的时间均为1分钟,‎ 所以P(X=2)=P(Y=1)P(Y=1)=0.1×0.1=0.01;‎ P(X=1)=1-P(X=0)-P(X=2)=0.49.‎ 所以X的分布列为 X ‎0‎ ‎1‎ ‎2‎ P ‎0.5‎ ‎0.49‎ ‎0.01‎ EX=0×0.5+1×0.49+2×0.01=0.51.‎ ‎17.K8、I1、I2[2012·北京卷] 近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):‎ ‎“厨余垃圾”箱 ‎“可回收物”箱 ‎“其他垃圾”箱 厨余垃圾 ‎400‎ ‎100‎ ‎100‎ 可回收物 ‎30‎ ‎240‎ ‎30‎ 其他垃圾 ‎20‎ ‎20‎ ‎60‎ ‎(1)试估计厨余垃圾投放正确的概率;‎ ‎(2)试估计生活垃圾投放错误的概率;‎ ‎(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.‎ 注:s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为数据x1,x2,…,xn的平均数 ‎17.解:(1)厨余垃圾投放正确的概率约为 ==.‎ ‎(2)设生活垃圾投放错误为事件A,‎ 则事件表示生活垃圾投放正确.‎ 事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,‎ 即P()约为=0.7,‎ 所以P(A)约为1-0.7=0.3.‎ ‎(3)当a=600,b=c=0时,s2取得最大值.‎ 因为=(a+b+c)=200,‎ 所以s2=[(600-200)2+(0-200)2+(0-200)2]=80 000.‎ ‎19.I2、I4、K6、K8[2012·辽宁卷] 电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.‎ 图1-6‎ 将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.‎ ‎(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?‎ 非体育迷 体育迷 合计 男 女 ‎10‎ ‎55‎ 合计 ‎(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中.采用随机抽样方法每次抽取1名观众,抽取3次.记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).‎ 附:χ2=,‎ P(χ2≥k)‎ ‎0.05‎ ‎0.01‎ k ‎3.841‎ ‎6.635‎ ‎19.解:(1)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:‎ 非体育迷 体育迷 合计 男 ‎30‎ ‎15‎ ‎45‎ 女 ‎45‎ ‎10‎ ‎55‎ 合计 ‎75‎ ‎25‎ ‎100‎ 将2×2列联表中的数据代入公式计算,得 χ2===≈3.030.‎ 因为3.030<3.841,所以没有理由认为“体育迷”与性别有关.‎ ‎(2)由频率分布直方图知抽到“体育迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“体育迷”的概率为.‎ 由题意X~B,从而X的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P E(X)=np=3×=.‎ D(X)=np(1-p)=3××=.‎ K9 单元综合 ‎17.K9[2012·四川卷] 某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.‎ ‎(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;‎ ‎(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.‎ ‎17.解: (1)设“至少有一个系统不发生故障”为事件C,那么1-P()=1-·p=.‎ 解得p=.‎ ‎(2)由题意,P(ξ=0)=C3=,‎ P(ξ=1)=C2·=,P(ξ=2)=C·2=,P(ξ=3)=C3=,所以,随机变量ξ的概率分布列为:‎ ξ ‎0‎ ‎1‎ ‎2‎ ‎3‎ P 故随机变量ξ的数学期望:‎ Eξ=0×+1×+2×+3×=.‎
查看更多

相关文章

您可能关注的文档