历届高考数学真题汇编专题4_数列_理(2)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

历届高考数学真题汇编专题4_数列_理(2)

‎【2012高考试题】‎ 一、选择题 ‎1.【2012高考真题重庆理1】在等差数列中,,则的前5项和=‎ ‎ A.7 B‎.15 C.20 D.25 ‎ ‎2.【2012高考真题浙江理7】设是公差为d(d≠0)的无穷等差数列﹛an﹜的前n项和,则下列命题错误的是 A.若d<0,则数列﹛Sn﹜有最大项 B.若数列﹛Sn﹜有最大项,则d<0‎ C.若数列﹛Sn﹜是递增数列,则对任意,均有 D. 若对任意,均有,则数列﹛Sn﹜是递增数列 ‎3.【2012高考真题新课标理5】已知为等比数列,,,则( )‎ ‎ ‎ ‎【答案】D ‎ ‎ ‎【解析】因为为等比数列,所以,又,所以或.若,解得,‎ ‎;若,解得,仍有,综上选D.‎ ‎4.【2012高考真题上海理18】设,,在中,正数的个数是( )‎ A.25 B.‎50 ‎‎ C.75 D.100‎ ‎5.【2012高考真题辽宁理6】在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=‎ ‎(A)58 (B)88 (C)143 (D)176‎ ‎【答案】B ‎【解析】在等差数列中,,答案为B ‎6.【2012高考真题四川理12】设函数,是公差为的等差数列,,则( )‎ A、 B、 C、 D、‎ ‎7.【2012高考真题湖北理7】定义在上的函数 ‎,如果对于任意给定的等比数列, 仍是等比数列,则称为“保等比数列函数”. 现有定义在上的如下函数:‎ ‎①; ②; ③; ④.‎ 则其中是“保等比数列函数”的的序号为 ‎ A. ‎① ② B.③ ④ C.① ③ D.② ④ ‎ ‎8.【2012高考真题福建理2】等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为 A.1 B‎.2 C.3 D.4‎ ‎【答案】B.‎ ‎ 【解析】由等差中项的性质知,又.故选B.‎ ‎9.【2012高考真题安徽理4】公比为等比数列的各项都是正数,且,则=( )‎ ‎ ‎ ‎【答案】B ‎ 【解析】.‎ ‎10.【2012高考真题全国卷理5】已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列的前100项和为 ‎(A) (B) (C) (D) ‎ ‎【答案】A 二、填空题 ‎11.【2012高考真题浙江理13】设公比为q(q>0)的等比数列{an}的前n项和为Sn。若S2=‎3a2+2,S4=‎3a4+2,则q=______________。‎ ‎ 【答案】‎ ‎【解析】将,两个式子全部转化成用,q表示的式子.‎ 即,两式作差得:,即:,解之得:(舍去).‎ ‎12.【2012高考真题四川理16】记为不超过实数的最大整数,例如,,,。设为正整数,数列满足,,现有下列命题:‎ ‎①当时,数列的前3项依次为5,3,2;‎ ‎②对数列都存在正整数,当时总有;‎ ‎③当时,;‎ ‎④对某个正整数,若,则。‎ 其中的真命题有____________。(写出所有真命题的编号)‎ ‎【答案】①③④‎ ‎【解析】当时, ,‎ ‎,故①正确;同样验证可得③④正确,②错误.‎ ‎13.【2012高考真题新课标理16】数列满足,则的前项和为 ‎ ‎14.【2012高考真题辽宁理14】已知等比数列{an}为递增数列,且,则数列{an}的通项公式an =______________。‎ ‎【答案】‎ ‎【解析】‎ ‎15.【2012高考真题江西理12】设数列{an},{bn}都是等差数列,若,,则__________。‎ ‎【答案】35‎ ‎【解析】设数列的公差分别为,则由,得,即,所以,‎ 所以。‎ ‎16.【2012高考真题北京理10】已知等差数列为其前n项和。若,,则=_______。‎ ‎18.【2012高考真题重庆理12】 .‎ ‎ 【答案】‎ ‎【解析】‎ ‎19.【2012高考真题上海理6】有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则 。‎ ‎【答案】。‎ ‎【解析】由题意可知,该列正方体的体积构成以1为首项,为公比的等比数列,‎ ‎∴++…+==,∴。‎ ‎20.【2012高考真题福建理14】数列{an}的通项公式,前n项和为Sn,则S2012=___________.‎ 三、解答题 ‎21【2012高考江苏20】(16分)已知各项均为正数的两个数列和满足:,,‎ ‎(1)设,,求证:数列是等差数列;‎ ‎(2)设,,且是等比数列,求和的值.‎ ‎【答案】解:(1)∵,∴。‎ ‎ ∴ 。‎ ‎∴ 。‎ ‎ ∴数列是以1 为公差的等差数列。‎ ‎(2)∵,∴。‎ ‎ ∴。(﹡)‎ ‎ 设等比数列的公比为,由知,下面用反证法证明 ‎ 若则,∴当时,,与(﹡)矛盾。‎ ‎【解析】(1)根据题设和,求出,从而证明而得证。‎ ‎ (2)根据基本不等式得到,用反证法证明等比数列的公比。‎ 从而得到的结论,再由知是公比是的等比数列。最后用反证法求出。‎ ‎ 22.【2012高考真题湖北理18】(本小题满分12分)‎ 已知等差数列前三项的和为,前三项的积为.‎ ‎(Ⅰ)求等差数列的通项公式;‎ ‎(Ⅱ)若,,成等比数列,求数列的前项和.‎ ‎ ‎ ‎(Ⅱ)当时,,,分别为,,,不成等比数列;‎ 当时,,,分别为,,,成等比数列,满足条件.‎ 故 ‎ 记数列的前项和为.‎ 当时,;当时,;‎ 当时,‎ ‎ ‎ ‎. 当时,满足此式.‎ 综上, ‎ ‎23.【2012高考真题广东理19】(本小题满分14分)‎ 设数列{an}的前n项和为Sn,满足,n∈N﹡,且a1,a2+5,a3成等差数列.‎ (1) 求a1的值;‎ (2) 求数列{an}的通项公式.‎ (3) 证明:对一切正整数n,有.‎ ‎【答案】本题考查由数列的递推公式求通项公式,不等式证明问题,考查了学生的运算求解能力与推理论证能力,难度一般.‎ ‎25.【2012高考真题四川理20】(本小题满分12分) 已知数列的前项和为,且对一切正整数都成立。‎ ‎(Ⅰ)求,的值;‎ ‎(Ⅱ)设,数列的前项和为,当为何值时,最大?并求出的最大值。‎ ‎【答案】本题主要考查等比数列、等差数列的概念和前n项和公式,以及对数运算等基础知识,考查逻辑推理能力,基本运算能力,以及方程与函数、化归与转化等数学思想 ‎ ‎ ‎26.【2012高考真题四川理22】(本小题满分14分)‎ ‎ 已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。‎ ‎(Ⅰ)用和表示;‎ ‎(Ⅱ)求对所有都有成立的的最小值;‎ ‎(Ⅲ)当时,比较与的大小,并说明理由。‎ ‎【答案】本题主要考查导数的应用、不等式、数列等基础知识,考查基本运算能力、逻辑推理能力、分析问题与解决问题的能力和创新意识,考查函数与方程、数形结合、分类讨论、化归与转化由特殊到一般等数学思想 ‎ ‎ ‎27.【2012高考真题广东理19】(本小题满分14分)‎ 设数列{an}的前n项和为Sn,满足,n∈N﹡,且a1,a2+5,a3成等差数列.‎ (1) 求a1的值;‎ (2) 求数列{an}的通项公式.‎ (3) 证明:对一切正整数n,有.‎ ‎【答案】本题考查由数列的递推公式求通项公式,不等式证明问题,考查了学生的运算求解能力与推理论证能力,难度一般.‎ ‎29.【2012高考真题重庆理21】(本小题满分12分,(I)小问5分,(II)小问7分.)‎ ‎ 设数列的前项和满足,其中.‎ ‎ (I)求证:是首项为1的等比数列;‎ ‎(II)若,求证:,并给出等号成立的充要条件.‎ ‎【答案】‎ ‎30.【2012高考真题江西理17】(本小题满分12分)‎ 已知数列{an}的前n项和,,且Sn的最大值为8.‎ ‎(1)确定常数k,求an;‎ ‎(2)求数列的前n项和Tn。‎ ‎【答案】‎ ‎ ‎ ‎31.【2012高考真题安徽理21】(本小题满分13分)‎ ‎ 数列满足:‎ ‎(I)证明:数列是单调递减数列的充分必要条件是;‎ ‎(II)求的取值范围,使数列是单调递增数列。‎ ‎【答案】本题考查数列的概念及其性质,不等式及其性质,充要条件的意义,数列与函数的关系等基础知识,考查综合运用知识分析问题的能力,推理论证和运算求解能力。‎ ‎【解析】(I)必要条件 当时,数列是单调递减数列。‎ 充分条件 数列是单调递减数列,‎ 得:数列是单调递减数列的充分必要条件是。‎ ‎(II)由(I)得:,‎ ①当时,,不合题意;‎ ②当时,,‎ ‎,‎ ‎。‎ ‎32.【2012高考真题天津理18】(本小题满分13分)‎ 已知是等差数列,其前n项和为Sn,是等比数列,且,‎ ‎.‎ ‎(Ⅰ)求数列与的通项公式;‎ ‎(Ⅱ)记,,证明().‎ ‎【答案】‎ ‎33.【2012高考真题湖南理19】(本小题满分12分)‎ 已知数列{an}的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,…… ‎ (1) 若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{ an }的通项公式.‎ (2) 证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意,三个数A(n),B(n),C(n)组成公比为q的等比数列.‎ ‎【答案】解(1)对任意,三个数是等差数列,所以 ‎            ‎ 即亦即 故数列是首项为1,公差为4的等差数列.于是 ‎(Ⅱ)(1)必要性:若数列是公比为q的等比数列,则对任意,有 由知,均大于0,于是 ‎    ‎ ‎    ‎ 即==,所以三个数组成公比为的等比数列.‎ ‎【解析】‎ ‎【2011年高考试题】‎ ‎1. (2011年高考四川卷理科8)数列的首项为, 为等差数列且 .若则,,则( )‎ ‎(A)0 (B)3 (C)8 (D)11‎ 答案:B 解析:由已知知由叠加法.‎ ‎2.(2011年高考全国卷理科4)设为等差数列的前项和,若,公差,,则 ‎ ‎(A)8 (B)7 (C)6 (D)5‎ ‎3. (2011年高考广东卷理科11)等差数列前9项的和等于前4项的和.若,则 .‎ ‎【答案】10‎ ‎【解析】由题得 ‎5. (2011年高考湖北卷理科13)《九章算术》“竹九节”问题:现有一根9节的竹子,自下而下各节的容积成等差数列,上面4节的容积共‎3升,下面3节的容积共‎4升,则第5节的容积为 升 答案: ‎ 解析:设从上往下的9节竹子的容积依次为a1,a2,,……,a9,公差为d,则有a1+a2+a3+a4=3, a7+a8+a9=4,即‎4a5-10d=3,‎3a5+9d=4,联立解得:.即第5节竹子的容积.‎ ‎5.(2011年高考陕西卷理科14)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距‎10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)。‎ ‎【答案】2000‎ ‎【解析】设树苗集中放置在第号坑旁边,则20名同学返所走的路程总和为 ‎=即时.‎ ‎6.(2011年高考重庆卷理科11)在等差数列中,,则 ‎ 解析:74. ,故 ‎7.(2011年高考江苏卷13)设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是________‎ ‎8.(2011年高考北京卷理科11)在等比数列{an}中,a1=,a4=-4,则公比q=______________;____________。‎ ‎【答案】—2 ‎ ‎9. (2011年高考山东卷理科20)(本小题满分12分)‎ 等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.‎ 第一列 第二列 第三列 第一行 ‎3‎ ‎2‎ ‎10‎ 第二行 ‎6‎ ‎4‎ ‎14‎ 第三行 ‎9‎ ‎8‎ ‎18‎ ‎(Ⅰ)求数列的通项公式;‎ ‎(Ⅱ)若数列满足:,求数列的前项和.‎ ‎【解析】(I)当时,不合题意;‎ 当时,当且仅当时,符合题意;‎ 当时,不合题意。‎ 因此 所以公式q=3,‎ 故 ‎10.(2011年高考辽宁卷理科17)(本小题满分12分)‎ ‎ 已知等差数列{an}满足a2=0,a6+a8= -10‎ ‎ (I)求数列{an}的通项公式;‎ ‎ (II)求数列的前n项和.‎ 所以.‎ 综上,数列的前n项和为.‎ ‎11.(2011年高考浙江卷理科19)(本题满分14分)已知公差不为0的等差数列的首项 (),设数列的前n项和为,且,,成等比数列(Ⅰ)求数列的通项公式及(Ⅱ)记,,当时,试比较与的大小.[‎ ‎【解析】(Ⅰ)‎ ‎ 则 ,‎ ‎(Ⅱ) ‎ 因为,所以 当时, 即;‎ 所以当时,;当时, .‎ ‎12.(2011年高考安徽卷理科18)(本小题满分13分)‎ 在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.‎ ‎(Ⅰ)求数列的通项公式;‎ ‎(Ⅱ)设求数列的前项和.‎ ‎(Ⅱ)由(Ⅰ)知,‎ 又 所以数列的前项和为 ‎13. (2011年高考天津卷理科20)(本小题满分14分)‎ 已知数列与满足:, ,且.‎ ‎(Ⅰ)求的值;‎ ‎(Ⅱ)设,证明:是等比数列;‎ ‎(Ⅲ)设证明:.‎ ‎【解析】本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论的思想方法.‎ ‎(Ⅰ)解:由,,可得, 又 当n=1时,,由,,得;‎ 当n=2时,,可得.‎ 当n=3时,,可得.‎ ‎(III)证明:由(II)可得,‎ 于是,对任意,有 将以上各式相加,得 即,‎ 此式当k=1时也成立.由④式得 从而 所以,对任意,‎ 对于n=1,不等式显然成立.‎ 所以,对任意 ‎14. (2011年高考江西卷理科18)(本小题满分12分)‎ 已知两个等比数列,,满足,,,.‎ ‎(1)若,求数列的通项公式;‎ ‎(2)若数列唯一,求的值.‎ ‎15. (2011年高考湖南卷理科16)对于,将表示为,当时,‎ ‎,当时,为或.记为上述表示中为的个数(例如:,‎ ‎,故,),则(1) ;(2) .‎ 答案:2; 1093‎ 解析:(1)由题意知,所以2;‎ ‎(2)通过例举可知:,,,,,,,‎ ‎,且相邻之间的整数的个数有0,1,3,7,15,31,63.它们正好满足“杨辉三角”中的规律:‎ 从而 ‎.‎ 评析:本小题主要考查学生的阅读理解能力、探究问题能力和创新意识.以二进制为知识背景,着重考查等比数列求和以及“杨辉三角”中的规律的理解和运用.‎ ‎16. (2011年高考广东卷理科20)设数列满足,‎ (1) 求数列的通项公式;‎ (2) 证明:对于一切正整数n,‎ ‎ ‎ ‎②当 ‎ ‎ ‎ (2)当时,(欲证)‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ,‎ ‎ ‎ ‎ 当 ‎ 综上所述 ‎17. (2011年高考湖北卷理科19)(本小题满分13分)‎ 已知数列的前n项和为,且满足:‎ ‎(Ⅰ)求数列的通项公式;‎ ‎(Ⅱ)若存在,使得成等差数列,试判断:对于任意的,且,‎ 是否成等差数列,并证明你的结论.‎ 本小题主要考查等差数列、等比数列基础知识,同时考查推理论证能力,以及特殊与一般的思想.‎ 解析:‎ ‎(Ⅰ)由已知,可得,两式相减可得 即又,所以当时,数列为:;‎ 当时,由已知,所以 于是由,可得,‎ 成等比数列,‎ 当时,‎ 综上,数列的通项公式为 ‎18.(2011年高考重庆卷理科21)(本小题满分12分。(Ⅰ)小问5分,(Ⅱ)小问7分)‎ ‎ 设实数数列的前n项和满足 ‎ (Ⅰ)若成等比数列,求和 ‎ (Ⅱ)求证:对有。‎ 解析:(Ⅰ)由题意,得,‎ 由是等比中项知,因此,‎ 由,解得,‎ ‎ (Ⅱ)证明:有题设条件有,‎ 故,且 从而对有 ①‎ ‎19.(2011年高考四川卷理科20) (本小题共12分) ‎ ‎ 设d为非零实数,an = [C1n d+2Cn2d2+…+(n—1)Cnn-1d n-1+nCnndn](n∈N*).‎ (I) 写出a1,a2,a3并判断{an}是否为等比数列.若是,给出证明;若不是,说明理由;‎ ‎(II)设bn=ndan (n∈N*),求数列{bn}的前n项和Sn.‎ 解析:(1)‎ ‎20.(2011年高考全国卷理科20)设数列满足且 ‎(Ⅰ)求的通项公式;(Ⅱ)设 ‎【解析】:(Ⅰ)由得,‎ 前项为,‎ ‎(Ⅱ)‎ ‎21.(2011年高考江苏卷20)设M为部分正整数组成的集合,数列的首项,前n项和为,已知对任意整数k属于M,当n>k时,都成立 ‎(1)设M={1},,求的值;‎ ‎(2)设M={3,4},求数列的通项公式 ‎(2)由题意:,‎ 当时,由(1)(2)得:‎ 由(3)(4)得: ‎ 由(1)(3)得:‎ 由(2)(4)得:‎ 由(7)(8)知:成等差,成等差;设公差分别为:‎ 由(5)(6)得:‎ 由(9)(10)得:成等差,设公差为d,‎ 在(1)(2)中分别取n=4,n=5得:‎ ‎22.(2011年高考江苏卷23)(本小题满分10分)‎ ‎ 设整数,是平面直角坐标系中的点,其中 ‎ (1)记为满足的点的个数,求;‎ ‎(2)记为满足是整数的点的个数,求 ‎23.(2011年高考北京卷理科20)(本小题共13分)‎ ‎ 若数列满足,数列为数列,记=.‎ ‎ (Ⅰ)写出一个满足,且〉0的数列;‎ ‎ (Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;‎ ‎ (Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。‎ 解:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。‎ ‎(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)‎ ‎(Ⅱ)必要性:因为E数列A5是递增数列,‎ 所以.‎ 因为 所以为偶数,‎ 所以要使为偶数,‎ 即4整除.‎ 当 时,有 当的项满足,‎ 当不能被4整除,此时不存在E数列An,‎ 使得 ‎24.(2011年高考福建卷理科16)(本小题满分13分)‎ 已知等比数列{an}的公比q=3,前3项和S3=。‎ ‎(I)求数列{an}的通项公式;‎ ‎(II)若函数在处取得最大值,且最大值为a3,求函数f(x)的解析式。‎ ‎25.(2011年高考上海卷理科22)(18分)已知数列和的通项公式分别为,(),将集合 中的元素从小到大依次排列,构成数列 ‎。‎ ‎(1)求;‎ ‎(2)求证:在数列中.但不在数列中的项恰为;‎ ‎(3)求数列的通项公式。‎ ‎【2010年高考试题】‎ ‎(2010浙江理数)(3)设为等比数列的前项和,,则 ‎(A)11 (B)5 (C) (D)‎ 解析:解析:通过,设公比为,将该式转化为,解得=-2,带入所求式可知答案选D,本题主要考察了本题主要考察了等比数列的通项公式与前n项和公式,属中档题 ‎(2010全国卷2理数)(4).如果等差数列中,,那么 ‎(A)14 (B)21 (C)28 (D)35‎ ‎(2010辽宁理数)(6)设{an}是有正数组成的等比数列,为其前n项和。已知a‎2a4=1, ,则 ‎(A) (B) (C) (D) ‎ ‎【答案】B ‎【命题立意】本题考查了等比数列的通项公式与前n项和公式,考查了同学们解决问题的能力。‎ ‎【解析】由a‎2a4=1可得,因此,又因为,联力两式有,所以q=,所以,故选B。‎ ‎(2010江西理数)5.等比数列中,,=4,函数,则( )‎ A. B. C. D. ‎ ‎【答案】C ‎【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x项均取0,则只与函数的一次项有关;得:。‎ ‎(2010江西理数)4. ( )‎ A. B. C. 2 D. 不存在 ‎【答案】B ‎【解析】考查等比数列求和与极限知识.解法一:先求和,然后对和取极限。‎ ‎(2010重庆理数)(1)在等比数列中, ,则公比q的值为 A. 2 B. ‎3 C. 4 D. 8 ‎ 解析: ‎ ‎(2010四川理数)(8)已知数列的首项,其前项的和为,且,则 ‎(A)0 (B) (C) 1 (D)2‎ ‎(2010天津理数)(6)已知是首项为1的等比数列,是的前n项和,且,则数列的前5项和为 ‎(A)或5 (B)或5 (C) (D)‎ ‎【答案】C ‎【解析】本题主要考查等比数列前n项和公式及等比数列的性质,属于中等题。‎ 显然q1,所以,所以是首项为1,公比为的等比数列, 前5项和.‎ ‎【温馨提示】在进行等比数列运算时要注意约分,降低幂的次数,同时也要注意基本量法的应用。‎ ‎(2010广东理数)4. 已知为等比数列,Sn是它的前n项和。若, 且与2的等差中项为,则=‎ A.35 B‎.33 C.31 D.29‎ ‎1.(2010安徽理数)10、设是任意等比数列,它的前项和,前项和与前项和分别为,则下列等式中恒成立的是 A、 B、‎ C、 D、‎ ‎【答案】D ‎【分析】取等比数列,令得代入验算,只有选项D满足。‎ ‎【方法技巧】对于含有较多字母的客观题,可以取满足条件的数字代替字母,代入验证,若能排除3个选项,剩下唯一正确的就一定正确;若不能完全排除,可以取其他数字验证继续排除.本题也可以首项、公比即项数n表示代入验证得结论.‎ ‎(2010湖北理数)7、如图,在半径为r 的园内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去,设为前n个圆的面积之和,则= ‎ A. 2 B. C.4 D.6‎ ‎(2010福建理数)3.设等差数列的前n项和为,若,,则当取最小值时,n等于 A.6 B.‎7 ‎ C.8 D.9‎ ‎【答案】A ‎【解析】设该数列的公差为,则,解得,‎ 所以,所以当时,取最小值。‎ ‎【命题意图】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力。‎ ‎(2010辽宁理数)(16)已知数列满足则的最小值为__________.‎ ‎(2010福建理数)11.在等比数列中,若公比,且前3项之和等于21,则该数列的通项公式 .‎ ‎【答案】‎ ‎【解析】由题意知,解得,所以通项。‎ ‎【命题意图】本题考查等比数列的通项公式与前n项和公式的应用,属基础题。‎ ‎3. (2010江苏卷)8、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____‎ ‎[解析]考查函数的切线方程、数列的通项。 ‎ 在点(ak,ak2)处的切线方程为:当时,解得,‎ 所以。‎ ‎(2010江西理数)22. (本小题满分14分)‎ 证明以下命题:‎ (1) 对任一正整a,都存在整数b,c(b1)。设=+…..+ ,=-+…..+(-1 ,n ‎ ‎ (1)若== 1,d=2,q=3,求 的值;‎ ‎(2)若=1,证明(1-q)-(1+q)=,n;‎ ‎(3) 若正数n满足2nq,设的两个不同的排列, , 证明。‎ 本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。‎ 所以,‎ ‎ ‎ ‎ ‎ ‎(Ⅲ)证明:‎ ‎ ‎ 因为所以 ‎ ‎ 若,取i=n ‎ 若,取i满足且 ‎【2008年高考试题】‎ ‎4.(2008·广东卷理2)记等差数列的前项和为,若,,则( )‎ A.16 B.‎24 ‎‎ ‎ C.36 D.48‎ 答案:D 解析:,,故 ‎7.(2008·广东理2)记等差数列的前项和为,若,,则( )‎ A.16 B.‎24 ‎ C.36 D.48‎ 答案:D 。‎ ‎3.(2008·海南宁夏卷理17)已知数列是一个等差数列,且,。‎ ‎(1)求的通项;‎ ‎(2)求前n项和的最大值。‎ 解:(Ⅰ)设的公差为,由已知条件,,解出,.‎ 所以.‎ ‎(Ⅱ).‎ 所以时,取到最大值.‎ ‎4.(2008·山东理19文20)将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:‎ a1‎ a‎2 a3‎ a‎4 a5 a6‎ a‎7 a8 a9 a10‎ ‎……‎ 记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1. Sn为数列{bn}的前n项和,且满足=1=(n≥2).‎ ‎(Ⅰ)证明数列{}成等差数列,并求数列{bn}的通项公式;‎ ‎(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第k(k≥3)行所有项和的和.‎ ‎ (Ⅱ)解:设上表中从第三行起,每行的公比都为q,且q>0.‎ ‎ 因为   ‎ ‎  所以表中第1行至第12行共含有数列{an}的前78项,‎ ‎  故 a82在表中第13行第三列, 因此 ‎ 又    所以 q=2.‎ ‎ 记表中第k(k≥3)行所有项的和为S,‎ 则(k≥3).‎ 点评:本题考查等差数列、等比数列的基本知识,考查数列求和及推理运算能力。‎ ‎5.(2008·江苏卷19).(Ⅰ)设是各项均不为零的等差数列(),且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:‎ ‎①当n =4时,求的数值;②求的所有可能值;‎ ‎(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列.‎ ‎②当n=5 时, 中同样不可能删去首项或末项.‎ 若删去,则有=,即.故得=6 ;‎ 若删去,则=,即.‎ 化简得3=0,因为d≠0,所以也不能删去;‎ 若删去,则有=,即.故得= 2 .‎ 当n≥6 时,不存在这样的等差数列.事实上,在数列,,,…,,, 中,由于不能删去首项或末项,若删去,则必有=,这与d≠0 矛盾;同样若删去也有=,这与d≠0 矛盾;若删去,…,中任意一个,则必有=,这与d≠0 矛盾.综上所述,n∈{4,5}.‎ 点评:等差等比数列这部分内容主要考查公式的灵活应用,这是高考的热点。‎ ‎6.(2008·广东卷21)设为实数,是方程的两个实根,数列 满足,,(…).(1)证明:,;(2)求数列的通项公式;‎ ‎(3)若,,求的前项和.‎ ‎①当时,此时方程组的解记为 即、分别是公比为、的等比数列,‎ 由等比数列性质可得,,‎ 两式相减,得 ‎,,‎ ‎,‎ ‎,即,‎ ‎②当时,即方程有重根,,‎ 即,得,不妨设,由①可知 ‎,,‎ 即,等式两边同时除以,得,即 数列是以1为公差的等差数列,,‎ 综上所述,‎ ‎【2007年高考试题】‎ ‎1.(2007·宁夏、海南理4)已知是等差数列,,其前10项和,‎ 则其公差(  )‎ A. B. C. D.‎ 答案:D 解析: 选D ‎2.(2007·宁夏、海南理7)已知,,成等差数列,成等比数列,则的最小值是(  )‎ A. B. C. D.‎ 答案:D 解析: 选D。‎ ‎3.(2007·广东理5) 已知数列{}的前n项和,第k项满足5<<8,则=‎ ‎ A.9 B.‎8 C.7 D.6‎ ‎1.(2007·山东理17)设数列满足,.‎ ‎(Ⅰ)求数列的通项;‎ ‎(Ⅱ)设,求数列的前项和.‎ 解:(I)‎ ‎ ‎ 验证时也满足上式,‎ ‎(II) ,‎ ‎ ‎ ‎ ‎ ‎ ,‎ ‎ ‎ ‎2.(2007·山东理18)‎ ‎ 设是公比大于1的等比数列,为数列的前项和.已知,‎ 且构成等差数列.‎ ‎(1)求数列的等差数列.‎ ‎(2)令求数列的前项和.‎ ‎ ‎ ‎(2)由于 ‎ 由(1)得 ‎ ‎ ‎ 又 ‎ 是等差数列.‎ ‎ ‎ ‎ ‎ ‎ 故.‎ ‎ ‎ ‎ ‎
查看更多

相关文章

您可能关注的文档