2011年高考数学真题分类汇编J

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2011年高考数学真题分类汇编J

‎                   ‎ 课标理数12.J2[2011·北京卷] 用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)‎ 课标理数12.J2[2011·北京卷] 14 【解析】 若不考虑数字2,3至少都出现一次的限制,对个位,十位,百位,千位,每个“位置”都有两种选择,所以共有24=16个四位数,然后再减去“2222,3333”这两个数,故共有16-2=14个满足要求的四位数.‎ 大纲理数7.J2[2011·全国卷] 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有(  )‎ A.4种 B.10种 ‎ C.18种 D.20种 大纲理数7.J2[2011·全国卷] B 【解析】 若取出1本画册,3本集邮册,有C种赠送方法;若取出2本画册,2本集邮册,有C种赠送方法,则不同的赠送方法有C+C=10种,故选B.‎ 大纲文数9.J2[2011·全国卷] 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(  )‎ A.12种 B.24种 C.30种 D.36种 大纲文数9.J2[2011·全国卷] B 【解析】 从4位同学中选出2人有C种方法,另外2位同学每人有2种选法,故不同的选法共有C×2×2=24种,故选B.‎ 课标理数15.J2[2011·湖北卷] 给n个自上而下相连的正方形着黑色或白色,当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如图1-3所示:‎ 图1-3‎ 由此推断,当n=6时,黑色正方形互不相邻的着色方案共有________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示)‎ 课标理数15.J2[2011·湖北卷] 21 43 【解析】 (1)以黑色正方形的个数分类:①若有3块黑色正方形,则有C=4种;②若有2块黑色正方形,则有C=10种;③若有1块黑色正方形,则有C=6种;④若无黑色正方形,则有1种.所以共有4+10+6+1=21种.‎ ‎(2)至少有2块黑色相邻包括:有2块黑色相邻,有3块黑色相邻,有4块黑色相邻,有5块黑色相邻,有6块黑色相邻等几种情况.①有2块黑色正方形相邻,有(C+C)+A+C=23种;②有3块黑色正方形相邻,有C+A+C=12种;③有4块黑色正方形相邻,有C+C=5种;④有5块黑色正方形相邻,有C=2种;⑤有6块黑色正方形相邻,有1种.故共有23+12+5+2+1=43种.‎ 课标理数12.J3[2011·安徽卷] 设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=________.‎ 课标理数12.J3[2011·安徽卷] 0 【解析】 a10,a11分别是含x10和x11项的系数,所以a10=-C,a11=C,所以a10+a11=-C+C=0.‎ 大纲理数13.J3[2011·全国卷] (1-)20的二项展开式中,x的系数与x9的系数之差为________.‎ 大纲理数13.J3[2011·全国卷] 0 【解析】 展开式的第r+1项为C(-)r=C(-1)rx,x的系数为C,x9的系数为C,则x的系数与x9的系数之差为0.‎ 大纲文数13.J3[2011·全国卷] (1-x)10的二项展开式中,x的系数与x9的系数之差为________.‎ 大纲文数13.J3[2011·全国卷] 0 【解析】 展开式的第r+1项为C(-x)r=C(-1)rxr,x的系数为-C,x9的系数为-C,则x的系数与x9的系数之差为0.‎ 课标理数6.J3[2011·福建卷] (1+2x)5的展开式中,x2的系数等于(  )‎ A.80 B.40 C.20 D.10‎ 课标理数6.J3[2011·福建卷] B 【解析】 因为(1+2x)5的通项为Tr+1=C(2x)r=2rCxr,‎ 令r=2,则2rC=22C=4×=40,即x2的系数等于40,故选B.‎ 课标理数10.J3[2011·广东卷] x的展开式中,x4的系数是________.(用数字作答)‎ 课标理数10.J3[2011·广东卷] 84 【解析】 先求中x3的系数,由于Tr+1=Cx7-r=Cx7-2r(-2)r,所以7-2r=3,所以r=2,即x4的系数为C(-2)2=84.‎ 课标理数11.J3[2011·湖北卷] 的展开式中含x15的项的系数为________.(结果用数值表示)‎ 课标理数11.J3[2011·湖北卷] 17 【解析】 二项展开式的通项为Tr+1=Cx18-r=C·x18-r.令18-r=15,解得r=2.所以展开式中含x15的项的系数为C=17.‎ 课标文数12.J3[2011·湖北卷] 的展开式中含x15的项的系数为________.(结果用数值表示)‎ 课标文数12.J3[2011·湖北卷] 17 【解析】 二项展开式的通项为Tr+1=Cx18-r=C·x18-r.令18-r=15,解得r=2.所以展开式中含x15的项的系数为C=17.‎ 课标理数8.J3[2011·课标全国卷] 的展开式中各项系数的和为2,则该展开式中常数项为(  )‎ A.-40 B.-20 C.20 D.40‎ 课标理数8.J3[2011·课标全国卷] D 【解析】 令x=1得各项系数和为(2-1)5=(1+a)=2, ∴a=1,‎ 所以原式变为,展开式的通项为Tr+1=C(2x)r=(-1)5-r2rCx2r-5.‎ 令2r-5=-1,得r=2;‎ 令2r-5=1,得r=3,‎ 所以常数项为(-1)5-222C+(-1)5-323C=(-4+8)C=40.‎ 课标理数14.J3[2011·山东卷] 若展开式的常数项为60,则常数a的值为________.‎ 课标理数14.J3[2011·山东卷] 4 【解析】 Tr+1=Cx6-r=Cx6-r(-1)rax-2r=Cx6-3r(-1)ra,‎ 由6-3r=0,得r=2, 所以Ca=60,所以a=4.‎ 课标理数4.J3[2011·陕西卷] (4x-2-x)6(x∈R)展开式中的常数项是(  )‎ A.-20 B.-15 ‎ C.15 D.20‎ 课标理数4.J3[2011·陕西卷] C 【解析】 由Tr+1=Can-rbr可知所求的通项为Tr+1=C(4x)6-r(-2-x)r=C(-1)r(2x)12-3r,要出现常数项,则r=4,则常数项为C(-1)4=15,故选C.‎ 大纲文数13.J3[2011·四川卷] (x+1)9的展开式中x3的系数是________.(用数字作答)‎ 大纲文数13.J3[2011·四川卷] 84 【解析】 本题主要考查二项展开式通项的应用. (x+1)9的展开式通项为Tr+1=Cx9-r,所以x3的系数是C==84.‎ 课标理数5.J3[2011·天津卷] 在的二项展开式中,x2的系数为(  )‎ A.- B. C.- D. 课标理数5.J3[2011·天津卷] C 【解析】 由二项式展开式得,Tr+1=C=22r-6Cx3-r,‎ 令r=1,则x2的系数为·22×1-6C=-.‎ 课标理数13.J3[2011·浙江卷] 设二项式(a>0)的展开式中x3的系数为A,常数项为B,若B=4A,则a的值是________.‎ 课标理数13.J3[2011·浙江卷] 2 【解析】 由题意得Tr+1=Cx6-r=Cx6-r,‎ ‎∴A=C,B=C.‎ 又∵B=4A,‎ ‎∴C=4C,解之得a2=4.‎ 又∵a>0,∴a=2.‎ 大纲理数4.J3[2011·重庆卷] (1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=(  )‎ A.6 B.7 C.8 D.9‎ 大纲理数4.J3[2011·重庆卷] B 【解析】 由题意可得C35=C36,即C=3C,‎ 即=3·,解得n=7.故选B.‎ 大纲文数11.J3[2011·重庆卷] (1+2x)6的展开式中x4的系数是______.‎ 大纲文数11.J3[2011·重庆卷] 240 【解析】 ∵(1+2x)6的展开式中含x4的项为C(2x)4=240x4,∴展开式中x4的系数是240.‎
查看更多

相关文章

您可能关注的文档