高考数学人教A版(理)一轮复习:第十一篇 第4讲 古典概型

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学人教A版(理)一轮复习:第十一篇 第4讲 古典概型

第4讲 古典概型 A级 基础演练(时间:30分钟 满分:55分)‎ 一、选择题(每小题5分,共20分)‎ ‎1.(2013·北京海淀期末)一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为 (  ).‎ A. B. C. D. 解析 由题意知,基本事件有=12个,满足条件的基本事件就一个,故所求概率为P=.‎ 答案 A ‎2.(2013·皖南八校联考)一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是 (  ).‎ A. B. C. D. 解析 基本事件有C=10个,其中为同色球的有C+C=4个,故所求概率为=.‎ 答案 C ‎3.(2013·福州一模)甲、乙两人各写一张贺年卡,随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是 (  ).‎ A. B. C. D. 解析 (甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁),共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以P==.‎ 答案 A ‎4.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为,则这班参加聚会的同学的人数为 ‎(  ).‎ A.12 B.18 C.24 D.32‎ 解析 设女同学有x人,则该班到会的共有(2x-6)人,所以=,得x=12,故该班参加聚会的同学有18人,故选B.‎ 答案 B 二、填空题(每小题5分,共10分)‎ ‎5.(2013·南京模拟)在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________.‎ 解析 由题意得到的P(m,n)有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个,在圆x2+y2=9的内部的点有(2,1),(2,2),所以概率为=.‎ 答案  ‎6.(2013·郑州二检)连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则θ∈的概率是________.‎ 解析 ∵m,n均为不大于6的正整数,∴当点A(m,n)位于直线y=x上及其下方第一象限的部分时,满足θ∈的点A(m,n)有6+5+4+3+2+1=21个,点A(m,n)的基本事件总数为6×6=36,故所求概率为=.‎ 答案  三、解答题(共25分)‎ ‎7.(12分)(2012·天津)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.‎ ‎(1)求应从小学、中学、大学中分别抽取的学校数目;‎ ‎(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,‎ ‎①列出所有可能的抽取结果;‎ ‎②求抽取的2所学校均为小学的概率.‎ 解 (1)由分层抽样的定义知,从小学中抽取的学校数目为6×=3;从中学中抽取的学校数目为6×=2;从大学中抽取的学校数目为6×=1.故从小学、中学、大学中分别抽取的学校数目为3,2,1.‎ ‎(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,1所大学记为A6,则抽取2所学校的所有可能结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15种.‎ ‎②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为(A1,A2),(A1,A3),(A2,A3),共3种.‎ 所以P(B)==.‎ ‎8.(13分)(2011·广东)在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:‎ 编号n ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 成绩xn ‎70‎ ‎76‎ ‎72‎ ‎70‎ ‎72‎ ‎(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;‎ ‎(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.‎ 解 (1)∵这6位同学的平均成绩为75分,‎ ‎∴(70+76+72+70+72+x6)=75,解得x6=90,‎ 这6位同学成绩的方差 s2=×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s=7.‎ ‎(2)从前5位同学中,随机地选出2位同学的成绩共有C=10种,‎ 恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为=0.4,‎ 即恰有1位同学成绩在区间(68,75)中的概率为0.4.‎ B级 能力突破(时间:30分钟 满分:45分)‎ 一、选择题(每小题5分,共10分)‎ ‎1.甲、乙两人喊拳,每人可以用手出0,5,10三种数字,每人则可喊0,5,10,15,20五种数字,当两人所出数字之和等于甲所喊数字时为甲胜,当两人所出数字之和等于乙所喊数字时为乙胜,若甲喊10,乙喊15时,则 (  ).‎ A.甲胜的概率大 B.乙胜的概率大 C.甲、乙胜的概率一样大 D.不能确定 解析 两人共有9种出数的方法,其中和为10的方法有3种,和为15的方法有2种,故甲胜的概率要大,应选A.‎ 答案 A ‎2.(2013·合肥二模)将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为 (  ).‎ A. B. C. D. 解析 由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为.‎ 答案 C 二、填空题(每小题5分,共10分)‎ ‎3.某同学同时掷两颗骰子,得到点数分别为a,b,则双曲线-=1的离心率e>的概率是________.‎ 解析 e= >,∴b>2a,符合b>2a的情况有:当a=1时,b=3,4,5,6四种情况;当a=2时,b=5,6两种情况,总共有6种情况.则所求概率为=.‎ 答案  ‎4.(2012·上海)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).‎ 解析 根据条件求出基本事件的个数,再利用古典概型的概率计算公式求解.因为每人都从三个项目中选择两个,有(C)3种选法,其中“有且仅有两人选择的项目完全相同”的基本事件有CCC个,故所求概率为=.‎ 答案  三、解答题(共25分)‎ ‎5.(12分)(2012·枣庄二模)袋内装有6个球,这些球依次被编号为1,2,3,…,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).‎ ‎(1)从袋中任意取出一个球,求其重量大于其编号的概率;‎ ‎(2)如果不放回的任意取出2个球,求它们重量相等的概率.‎ 解 (1)若编号为n的球的重量大于其编号.‎ 则n2-6n+12>n,即n2-7n+12>0.‎ 解得n<3或n>4.‎ ‎∴n=1,2,5,6.∴从袋中任意取出一个球,其重量大于其编号的概率P==.‎ ‎(2)不放回的任意取出2个球,这两个球编号的所有可能情形共有C=15种.‎ 设编号分别为m与n(m,n∈{1,2,3,4,5,6},且m≠n)球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.‎ ‎∴m=n(舍去)或m+n=6.‎ 满足m+n=6的情形为(1,5),(2,4),共2种情形.‎ 由古典概型,所求事件的概率为.‎ ‎6.某省实验中学共有特级教师10名,其中男性6名,女性4名,现在要从中抽调4名特级教师担任青年教师培训班的指导教师,由于工作需要,其中男教师甲和女教师乙不能同时被抽调.‎ ‎(1)求抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师的概率;‎ ‎(2)若抽到的女教师的人数为ξ,求P(ξ≤2).‎ 解 由于男教师甲和女教师乙不能同时被抽调,所以可分以下两种情况:‎ ‎①若甲和乙都不被抽调,有C种方法;‎ ‎②若甲和乙中只有一人被抽调,有CC种方法,故从10名教师中抽调4人,且甲和乙不同时被抽调的方法总数为C+CC=70+112=182.这就是基本事件总数.‎ ‎(1)记事件“抽调的4名教师中含有女教师丙,且恰有2名男教师,2名女教师”为A,因为含有女教师丙,所以再从女教师中抽取一人,若抽到的是女教师乙,则男教师甲不能被抽取,抽调方法数是C;若女教师中抽到的不是乙,则女教师的抽取方法有C种,男教师的抽取方法有C种,抽调的方法数是CC.故随机事件“抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师”含有的基本事件的个数是C+CC=40.‎ 根据古典概型概率的计算公式得P(A)==.‎ ‎(2)ξ的可能取值为0,1,2,3,4,所以P(ξ≤2)=1-P(ξ>2)=1-P(ξ=3)-P(ξ=4),若ξ=3,则选出的4人中,可以含有女教师乙,这时取法为CC种,也可以不含女教师乙,这时有CC种,故P(ξ=3)===;‎ 若ξ=4,则选出的4名教师全是女教师,必含有乙,有C种方法,故P(ξ=4)=‎ =,于是P(ξ≤2)=1--==.‎ 特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.‎
查看更多

相关文章

您可能关注的文档