2017-2018学年吉林省长春市十一高中高二上学期期末考试数学(理)试题(Word版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2017-2018学年吉林省长春市十一高中高二上学期期末考试数学(理)试题(Word版)

体验 探究 合作 展示 长春市十一高中2017-2018学年度高二上学期期末考试 数学试题(理科)‎ 组题人:高二数学组 2018.1.10‎ 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)‎ ‎1.已知复数,则( )‎ A. B. C. D. ‎ ‎2.若原命题为:“若为共轭复数,则”,则该命题的逆命题、否命题、逆否命题真假性的判断依次为( )‎ A. 真、真、真 B. 真、真、假 C. 假、假、真 D. 假、假、假 ‎3.“”的否定是( )‎ A. B. ‎ C. D. ‎ ‎4.“”是“方程表示焦点在轴上的椭圆”的( )‎ A. 充分不必要条件 B. 必要不充分条件 ‎ C. 充要条件 D. 既不充分也不必要条件 ‎5.设双曲线的离心率是,则其渐近线的方程为( )‎ A. B. C. D. ‎ ‎6.已知点,点与点关于平面对称,点与点关于轴对称,则( )‎ A. B. C. D. ‎ ‎7.由曲线与直线, 所围成的封闭图形面积为( )‎ A. B. C. 2 D. ‎ ‎8.若,设,则的值( )‎ A. 至多有一个不大于1 B. 至少有一个不大于1 ‎ C. 都大于1 D. 都小于1‎ ‎9.点在椭圆上,则的最大值为( ) A.       B.     C.     D.‎ ‎10.设函数在区间上单调递减,则实数的取值范围是( )‎ A. B. C. D. ‎ ‎11.在中,,若一个椭圆经过两点,它的一个焦点为点,另一个焦点在边上,则这个椭圆的离心率为( ) A.  B.  C.  D.‎ ‎12.已知函数,,若成立,则的最小值为( )‎ A. B. C. D. ‎ 二、填空题(本大题共4小题,每小题5分,共20分.)‎ ‎13.在极坐标系中,圆的圆心的极坐标是____________.‎ ‎14.观察下列各式:,,,则的末四位数字为____________.‎ ‎15.函数在区间上的值域为_________________.‎ ‎16.设分别为双曲线的左、右焦点,为双曲线在第一象限上的一点,若,则内切圆的面积为______________________.‎ 三、解答题(解答应写出文字说明,证明过程或演算步骤.)‎ ‎17.(本题满分10分)‎ 已知极点为直角坐标系的原点,极轴为轴正半轴且单位长度相同的极坐标系中曲线,直线(为参数).‎ ‎(1)求曲线上的点到直线距离的最小值;‎ ‎(2)若把上各点的横坐标都伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线.设,直线与曲线交于两点,求.‎ ‎18.(本题满分12分)‎ 如图,在四棱锥中,平面,,≌,,是线段的中点.‎ ‎(1)求证:∥平面;‎ ‎(2)求二面角的余弦值.[]‎ ‎19.(本题满分12分)‎ 已知.‎ ‎(1)若,求的单调区间;‎ ‎(2)当时,若在上恒成立,求的取值范围.‎ ‎20.(本题满分12分)‎ 已知椭圆的中心在原点,焦点在轴上,焦距为,且长轴长是短轴长的倍.‎ ‎(1)求椭圆的标准方程; ‎ ‎(2)设,过椭圆左焦点作斜率直线交于两点,若,求直线的方程.‎ ‎21.(本小题满分12分)‎ 已知抛物线:,过焦点的动直线与抛物线交于两点,线段的中点为.‎ ‎(1)当直线的倾斜角为时,.求抛物线的方程;‎ ‎(2)对于(1)问中的抛物线,设定点,求证:为定值.‎ ‎22.(本小题满分12分)‎ 已知.‎ ‎(1)当,时,求证:;‎ ‎(2)若存在,使得成立,求实数的取值范围.‎ 体验 探究 合作 展示 长春市十一高中2017-2018学年度高二上学期期末考试 数学试题(理科)参考答案 一、 选择题(每题5分,共60分)‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 答案 B C D A D D D B B C C A 二、选择题(每题5分,共20分)‎ ‎13. 14. 15. 16. ‎ 三、解答题 ‎17.解(1),圆心为,半径为;‎ 圆心到直线距离--------3分 所以上的点到的最小距离为.--------5分 ‎(2)伸缩变换为,所以--------7分 将和联立,得.因为--------8分 ‎--------10分 ‎18.解:(1)证明:以B为坐标原点,BA所在的直线为x轴,BC所在的直线为y轴,过点B且与平面ABC垂直的直线为z轴,建立空间直角坐标系如图所示.‎ 则B(0,0,0),C(0,,0),P(1,0,2),D,A(1,0,0),E,∴,,.‎ 显然平面PAB的法向量为,‎ 由,平面,‎ ‎∴∥平面.‎ ‎(2)由(1)知,,,设平面的法向量为,则,取,则 ‎∴为平面的一个法向量.‎ 同理:平面的法向量为 ‎∴,故二面角的余弦值为.‎ ‎19.解(1)当时,,则,‎ 令,解得,令,解得,‎ 所以增区间为,减区间为.‎ ‎(2)由,,当时,‎ 故在上为增函数,若,则只需,‎ 即:,‎ 综上有:‎ ‎20.解(1)依题意,,解得,‎ 所以椭圆的标准方程为.‎ (2) 设直线:,代入椭圆消去得:,‎ 设,则 所以:,‎ 即:,即:‎ 解得:,即,所以:‎ ‎21.解(1)由题意知,设直线的方程为,‎ 由 得:,所以:‎ 又由,所以,所以:抛物线的方程为 ‎(2)由(1)抛物线的方程为,此时设 消去得:,设,‎ 则:‎ 所以:‎ ‎ ,即 ‎ 所以:‎ ‎22.解(1)设,‎ ‎,由 所以:,‎ 故 ‎,所以,在上递增,所以 ‎(2)由条件知,‎ 设,,则 ‎,‎ 所以在上单调递增,‎ ‎(ⅰ)当时,‎ 在上为单调递增函数,故,‎ 所以:‎ ‎(ⅱ)当时,‎ 设 所以:在上为单调递增函数,‎ 所以:‎ 当时,恒成立,不合题意 综上所述:‎
查看更多

相关文章

您可能关注的文档