- 2021-06-19 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【物理】2020届一轮复习人教版第七章静电场中的图象问题学案
专题突破(七) 静电场中的图象问题 【p123】 静电场中常见的图象问题主要有以下几种类型:1.电场强度随位置变化的图象,即 E-x 图象;2. 电势随位置变化的图象,即φ-x 图象;3.电势能随位置变化的图象,即 Ep-x 图象.解答此类题目的关 键是弄清图象的物理意义,即坐标轴、坐标原点、斜率、面积、交点坐标等的物理意义,同时也可以根据 图象特点,把抽象的图象转化为具体的电场模型(如匀强电场、点电荷电场、等量同种电荷电场、等量异 种电荷电场等),再来分析、解决这类问题. 一、E-x 图象 例 1 有一个均匀带电圆环,以圆环圆心 O 为坐标原点,过 O 且垂直于圆环平面的线为 x 轴,如图甲所 示,现测得 x 轴上的电场强度随坐标 x 值变化的图象如图乙所示(场强为正值,表示方向沿 x 轴正方向), H、I 是 x 轴上两点,且 HO<OI,取无穷远处电势为零.则以下分析正确的是( ) A.该圆环带负电 B.x 轴上 O 点电势为零 C.将一个正的试探电荷沿 x 轴从 H 移动到 I 的过程中,电势能先增大后减小 D.H 点的电势低于 I 点的电势 【解析】根据 x 轴上的电场强度随坐标 x 值变化的图象可知,该圆环带正电,选项 A 错误;x 轴上 O 点电场强度为零,电势最高,H 点的电势高于 I 点的电势,选项 B、D 错误.将一个正的试探电荷沿 x 轴从 H 移动到 I 的过程中,电势能先增大后减小,选项 C 正确. 【答案】C 【归纳总结】1.几种常见的 E-x 图象 (1)点电荷的 E-x 图象 正点电荷及负点电荷的电场强度 E 随坐标 x 变化关系的图象大致如图 1 和图 2 所示. (2)两个等量异种点电荷的 E-x 图象 ①两电荷连线上的 E-x 图象如图 3 所示. ②两电荷连线的中垂线上的 E-y 图象如图 4 所示. (3)两个等量同种点电荷的 E-x 图象 ①两电荷连线上的 E-x 图象如图 5 所示. ②两电荷连线的中垂线上的 E-y 图象如图 6 所示. 2.E-x 图象特点 (1)反映了电场强度随位移变化的规律. (2)E>0 表示场强沿 x 轴正方向;E<0 表示场强沿 x 轴负方向. (3)图线与 x 轴围成的“面积”表示电势差,“面积”大小表示电势差大小,两点的电势高低根据电场 方向判定. 二、φ-x 图象 例 2 真空中有一静电场,其在 x 轴正半轴的电势φ随 x 变化的关系如图所示,则根据图象可知( ) A.R 处的电场强度 E=0 B.若试探电荷从 x1 处移到 x2 处,电场力不一定做正功 C.x1 处与 x2 处的电场强度沿 x 方向的分量的方向相反 D.该电场有可能是处在 O 点的正的点电荷激发产生的 【解析】φ-x 图象中,曲线上任意一点的切线的斜率表示电场强度,R 处切线的斜率不为零,故 x 轴方向的电场强度不为零,故 A 错误;若试探电荷从 x1 处移到 x2 处,电势降低,根据公式 WAB=qUAB,如果 是正电荷,电场力做正功;如果是负电荷,电场力做负功,故 B 正确;x1 处与 x2 处的切线斜率同为负值, 故 x 方向的电场强度分量的方向相同,故 C 错误;离电荷越近,电场强度越大,故φ-x 图象的斜率越大, 而在 O 点向右,切线斜率变大,故 O 点不可能有电荷,故 D 错误,故选 B. 【答案】B 【归纳总结】1.几种常见的φ-x 图象 (1)点电荷的φ-x 图象(取无限远处电势为零) ①正点电荷的φ-x 图象如图 1 所示; ②负点电荷的φ-x 图象如图 2 所示. (2)两个等量异种电荷连线上的φ-x 图象,如图 3 所示. (3)两个等量同种电荷的φ-x 图象 ①两正电荷连线上的φ-x 图象如图 4 所示. ②两正电荷连线的中垂线上的φ-y 图象如图 5 所示. 2.φ-x 图象特点及应用 (1)电场强度的大小等于φ-x 图线的斜率大小,电场强度为零处,φ-x 图线存在极值,其切线的斜 率为零. (2)在φ-x 图象中可以直接判断各点电势的大小,并可根据电势大小关系确定电场强度的方向. (3)在φ-x 图象中分析电荷移动时电势能的变化,可用 WAB=qUAB,进而分析 WAB 的正负,然后作出判断. 三、Ep(Ek)-x 图象 例 3 一带负电的粒子只在电场力作用下沿 x 轴正向运动,其电势能 Ep 随位移 x 变化的关系如图所示, 其中 O~x2 段关于直线 x=x1 对称的曲线,x2~x3 段是直线,则下列说法正确的是( ) A.x1 处电场强度最小,但不为零 B.粒子在 O~x2 段做匀变速运动,x2~x3 段做匀速直线运动 C.在 O、x1、x2、x3 处电势φ0、φ1、φ2、φ3 的关系为φ3>φ2=φ0>φ1 D.x2~x3 段的电场强度大小、方向均不变 【解析】根据电势能与电势的关系 Ep=qφ,场强与电势的关系 E=Δφ Δx ,得 E=1 q ·ΔEp Δx ,由数学知识 可知 Ep-x 图象切线的斜率等于ΔEp Δx ,x1 处切线斜率为零,则 x1 处电场强度为零,A 错误;由题图知在 O~ x1 段图象切线斜率的绝对值不断减小,可知场强减小,粒子所受的电场力减小,加速度减小,粒子做变速 运动,x1~x2 段图象切线的斜率不断增大,场强增大,粒子所受的电场力增大,粒子做变速运动,x2~x3 段斜率不变,场强不变,即电场强度大小和方向均不变,是匀强电场,粒子所受的电场力不变,粒子做匀 加速直线运动,B 错误,D 正确;根据 Ep=qφ,粒子带负电即 q<0,则知电势能越大,粒子所在处的电势 越低,所以有φ1>φ2=φ0>φ3,C 错误. 【答案】D 【归纳总结】解决此类图象问题的关键是弄清楚电场中的功能关系:电场力做功对应电势能的变化, 即 W 电=-ΔEp=Ep0-Ep,即 F 电=|ΔEp Δx |,因此图线的斜率表示了电场力的大小,也反映了电场强度的大小, 若电场力为恒力,则电场强度不变,则 Ep-x 图线为一条倾斜直线. 针对训练 1.已知某静电场的电场强度的方向与 x 轴的正方向一致,电场强度大小 E 与位置 x 的关系图象如图 所示,其中 O~x2 段为抛物线的一段且关于 x=x1 对称,x2~x3 段为倾斜的直线,且 x1=x2-x1=x3-x2,开 始时一带正电粒子位于原点,现给该粒子一水平向右的初速度,使其仅在电场力的作用下沿 x 轴的正方向 运动.则下列说法正确的是(C) A.带电粒子在 O~x2 段先做减速运动再做加速运动 B.带电粒子在 x2~x3 段做匀加速直线运动 C.位置 O 与 x1 间的电势差等于位置 x1 与 x2 间的电势差 D.在 O~x3 段电场力对带电粒子一直做负功 【解析】O~x3 段电场的方向始终沿 x 轴的正方向,则该带电粒子所受的电场力一直沿 x 轴的正方向, 粒子一直沿 x 轴的正方向做加速运动,则电场力一直对该粒子做正功,A、D 错误;x2~x3 段电场强度沿 x 轴的正方向逐渐增大,粒子做加速度逐渐增大的加速运动,B 错误;根据对称性可知,位置 O 与 x1 间的平 均电场强度与位置 x1 与 x2 间的平均电场强度相等,则由 U=Ed 可知,位置 O 与 x1 间的电势差等于位置 x1 与 x2 间的电势差,C 正确. 2.(多选)在 x 轴上存在一水平方向的电场,有一质量 m=2 kg 的带电小球沿光滑绝缘的水平面只在 电场力的作用下,以初速度 v0=2 m/s 在 x0=7 m 处开始向 x 轴负方向运动.电势能 Ep 随位置 x 的变化关 系如图所示,则小球的运动范围和最大速度分别为(BC) A.运动范围 x≥0 B.运动范围 x≥1 m C.最大速度 vm=2 2 m/s D.最大速度 vm=3 m/s 【解析】根据动能定理可得 W 电=0-1 2 mv2 0=-4 J,故电势能增大 4 J,因在开始时电势能为零,故电 势能最多增大 4 J,故运动范围在 x≥1 m,故 A 错误,B 正确;由图可知,电势能最大减小 4 J,故动能 最多增大 4 J,根据动能定理可得 W=1 2 mv2-1 2 mv2 0;解得 v=2 2 m/s,故 C 正确,D 错误. 3.(多选)在光滑的绝缘水平面内有一沿 x 轴的静电场,其电势φ随坐标 x 变化的图线如图所示(图中 φ0 已知).有一质量为 m,带电量为 q 的带负电小球(可视为质点)从 O 点以某一未知速度 v0 沿 x 轴正向移 动到点 x4.下列叙述正确的是(BC) A.带电小球从 O 运动到 x1 的过程中,所受电场力逐渐增大 B.带电小球从 x1 运动到 x3 的过程中,电势能一直增大 C.若小球的初速度 v0=2 φ0q m ,则运动过程中的最大速度为 6φ0q m D.要使小球能运动到 x4 处,则初速度 v0 至少为 2 φ0q m 【解析】由 E=U d 知,φ-x 图象的斜率等于电场强度,则可知小球从 O 运动到 x1 的过程中,场强不变, 由 F=qE 知,粒子所受电场力保持不变,故 A 错误;负电荷在电势高处电势能小,则小球从 x1 运动到 x3 的过程中,电势不断降低,负电荷的电势能一直增大,故 B 正确;若小球的初速度 v0=2 φ0q m ,当小球 运动到 x1 处时,电场力做正功最多,粒子的速度最大,从 x=0 到 x1 处,根据动能定理得:qφ0=1 2 mv2 m-1 2 mv2 0, 由题意,有:v0=2 φ0q m ,解得最大速度为:vm= 6φ0q m ,故 C 正确;只要小球能恰好运动到 x3 处,初 速度 v0 最小,就能到 x4 处,从 x=0 到 x3 处,根据动能定理得:qφ0=1 2 mv2 0,解得:v0= 2φ0q m ,故 D 错 误. 4.等量异种点电荷在周围空间产生静电场,其连线(x 轴)上各点的电势φ随 x 的分布图象如图所示.x 轴上 AO查看更多