专题3-2 积分与微积分基本定理-3年高考2年模拟1年原创备战2017高考精品系列之数学(理)(解析版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

专题3-2 积分与微积分基本定理-3年高考2年模拟1年原创备战2017高考精品系列之数学(理)(解析版)

www.ks5u.com ‎2017年高考备考之 ‎3年高考2年模拟1年原创 ‎【三年高考】‎ ‎1. 【2015高考湖南,理11】 .‎ ‎【答案】.‎ ‎【解析】.‎ ‎2.【2015高考陕西,理16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .‎ ‎【答案】‎ ‎【解析】建立空间直角坐标系,如图所示:‎ 原始的最大流量是,设抛物线的方程为(),因为该抛物线过点,所以,解得,所以,即,所以当前最大流量是 ‎,故原始的最大流量与当前最大流量的比值是,所以答案应填:.‎ ‎3.【2015高考天津,理11】曲线 与直线 所围成的封闭图形的面积为 .‎ ‎【答案】‎ ‎4. 【2014江西高考理第8题】若则( )‎ A. B. C. D.1‎ ‎【答案】B ‎5. 【2014山东高考理第6题】 直线在第一象限内围成的封闭图形的面积为( )‎ A. ‎ B. C. D.4‎ ‎【答案】‎ ‎【解析】由已知得,,故选.‎ ‎6. 【2014陕西高考理第3题】定积分的值为( )‎ ‎ ‎ ‎【答案】‎ ‎【解析】,故选 ‎【三年高考命题回顾】‎ 纵观前三年各地高考试题, 定积分属于理科内容,从近几年的高考试题来看,定积分重点考查定积分的应用,利用定积分求值,求面积,题型为选择题或填空题.‎ ‎【2017年高考复习建议与高考命题预测】‎ 定积分可以看作是导数在某一区间上的逆运算.它是新课标新增加的内容之一,在以前的课本中没有出现定积分的概念,在高考中主要考查定积分的计算和定积分的几何意义,多为容易题,一般每年出一道题,有时和二项式结合出题,因此在2017年复习备考中,只须掌握积分的概念,积分的运算,会用积分求面积,体积即可.‎ 由于在2016年的高考试题中积分没出题,预测2017年高考对定积分考查,可能是利用定积分求值,或与几何概型结合出题,利用定积分来求封闭图形的面积.‎ ‎【2017年高考考点定位】‎ 高考对定积分的考查主要有定积分的计算和定积分的几何意义,作为新增内容,它是大学微积分的基础,很受出题人的青睐,故在复习时应引起重视.‎ 考点一、求已知函数的定积分 ‎【备考知识梳理】‎ ‎1、定积分的概念 如果函数在区间 上连续,用分点将区间 等分成个小区间,在每个小区间 上任取一点 ,作和式 ,当 时,上述和式无限接近某个水常数,这个常数叫做函数在区间上的定积分,记作,即 ‎ ‎2、微积分基本定理 如果是区间上的连续函数,并且 ,那么 ,这个结论叫做微积分基本定理,又叫做牛顿——莱布尼兹公式.‎ ‎3、定积分的基本性质 ‎(1),其中为常数 ‎(2)‎ ‎(3),其中 ‎ ‎【规律方法技巧】‎ ‎1.求函数的定积分,关键是求出函数的一个原函数,即满足.正确运用求导运算与求原函数运算互为逆运算的关系.‎ ‎2.计算简单定积分的步骤 ‎(1)把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差;‎ ‎(2)利用定积分的性质把所求的定积分化为若干个定积分的和或差;‎ ‎(3)分别用求导公式找到F(x),使得F′(x)=f(x);‎ ‎(4)利用牛顿——莱布尼兹公式求出各个定积分的值;‎ ‎(5)计算所求定积分的值.‎ ‎3.求导运算与求原函数运算互为逆运算,求定积分的关键是找到被积函数的原函数,为避免出错,在求出原函数后可利用求导与积分互为逆运算的关系进行验证.‎ ‎【考点针对训练】‎ ‎1.【2016届吉林大学附中高三第二次模拟】( )‎ ‎(A) (B) (C) (D)‎ ‎【答案】B ‎【解析】依题意,其中表示的是单位圆的上半部分.‎ ‎2. 【2016届辽宁省锦州市高三下学期质量检测二】已知,则二项式 的展开式中的系数为( )‎ A. B. C. D.‎ ‎【答案】C 考点二、求分段函数的定积分 ‎【备考知识梳理】‎ ‎1、分段函数的定积分 ‎(1)分段函数在区间 上的定积分可分成几段定积分的和的形式.‎ ‎(2)分段的标准是使每一段上的函数表达式是确定的,一般按照原函数分段的情况分,无需分得过细.‎ ‎2、奇函数与偶函数在对称区间上的定积分 若为偶函数,且在关于原点对称的区间上连续,则 ‎ 若为奇函数,且在关于原点对称的区间上连续,则 ‎ ‎【规律方法技巧】‎ 分段函数在区间上的定积分可分成几段定积分的和的形式. 分段的标准只需依据已知函数的分段标准即可.‎ ‎【考点针对训练】‎ ‎1.求函数 在区间 上的定积分.‎ ‎【答案】‎ ‎2.【2016届海南师范大学附属中学高三临考模拟】设则等于( )‎ A. B. C. D.‎ ‎【答案】B ‎【解析】,选B.‎ 考点三、定积分的几何意义 ‎【备考知识梳理】‎ ‎ 1、当函数在区间上恒为正时,定积分的几何意义是直线 和曲线围成的曲边梯形的面积;‎ ‎2、一般情况下,定积分的几何意义是介于轴、曲线和直线之间的曲边梯形的面积的代数和,其中在轴上方的面积等于该区间上定积分值,轴下方的面积等于该区间上定积分的相反数.‎ ‎【规律方法技巧】‎ ‎1.利用定积分求平面图形面积的关键是画出几何图形,结合图形位置,确定积分区间以及被积函数,从而得到面积的积分表达式,再利用微积分基本定理求出积分值.‎ ‎2. 定积分的应用及技巧:(1)对被积函数,要先化简,再求定积分.(2)求被积函数是分段函数的定积分,依据定积分的性质,分段求定积分再求和.(3)对含有绝对值符号的被积函数,要去掉绝对值符号才能求定积分.(4)应用定积分求曲边梯形的面积,解题的关键是利用两条曲线的交点确定积分区间以及结合图形确定被积函数.求解两条曲线围成的封闭图形的面积一般是用积分区间内上方曲线减去下方曲线对应的方程、或者直接作差之后求积分的绝对值,否则就会求出负值.‎ 易错提示] 在使用定积分求两曲线围成的图形的面积时,要注意根据曲线的交点判断这个面积是怎样的定积分,既不要弄错积分的上下限,也不要弄错被积函数.‎ 用微积分基本定理求定积分时,要掌握积分与导数的互逆关系及求导公式的逆向形式.‎ ‎3.定积分的应用主要有两个问题:一是能利用定积分求曲边梯形的面积;二是能利用定积分求变速直线运动的路程及变力做功问题,其中,应特别注意求定积分的运算与利用定积分计算曲边梯形面积的区别.‎ ‎【考点针对训练】‎ ‎1.【2016届山东省东营市胜利一中高三最后一卷】如图所示,由函数与函数在区间上的图象所围成的封闭图形的面积为( )‎ A. B. C. D.‎ ‎【答案】D ‎【解析】由和在的交点坐标为,两函数图象所围成的封闭图形的面积为.故选D.‎ ‎2.【2016届安徽省六安一中高三下组卷三】函数 的图象与轴所围成的封闭图形的面积为( )‎ A. B. C. D.‎ ‎【答案】A ‎【应试技巧点拨】‎ ‎1. 利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.‎ ‎2.求曲边图形面积的方法与步骤 ‎(1)画图,并将图形分割为若干个曲边梯形;‎ ‎(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;‎ ‎(3)确定被积函数;‎ ‎(4)求出各曲边梯形的面积和,即各积分的绝对值的和.‎ ‎3. 定积分的几何意义是介于轴、曲线以及直线之间的曲边梯形面积的代数和 ,其中在轴上方的面积等于该区间上的积分值,在轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数.‎ ‎1. 【2016届山西省榆林市高三二模】设,若将函数的图像向左平移个单位后所得图像与原图像重合,则的值不可能为( )‎ A.4 B.6 C.8 D.12‎ ‎【答案】B ‎2. 【2016届山东省师大附中高三最后一模】设函数,若,,则等于( )‎ A. B. C. D.3‎ ‎【答案】B ‎【解析】∵函数, ,故选B.‎ ‎3. 【2016届吉林省毓文中学高三模拟】设(其中为自然对数的底数),则的值为( )‎ A. B. C. D.‎ ‎【答案】A ‎【解析】,故选A.‎ ‎4. 【2016届安徽省六安一中高三第九次月考】如图,矩形内的阴影部分是由曲线及直线与轴围成,向矩形 内随机投掷一点,若此点落在阴影部分的概率为,则的值是( )‎ A. B. C. D.‎ ‎【答案】B ‎5. 【2016届宁夏银川唐徕回民中学高三下三模】由曲线,直线及轴所围成的封闭图形的面积为( )‎ A. B. C.4 D.6‎ ‎【答案】A ‎【解析】由解得,故面积为.‎ ‎6. 【2016届山东省济宁市高三下学期3月模拟】若的展开式中各项的系数之和为81,且常数项为,则直线与曲线所围成的封闭区域面积为 .‎ ‎【答案】‎ ‎7. 【2016届河南省南阳一中高三第三次模拟】已知,则 .‎ ‎【答案】‎ ‎【解析】因为 ‎ ‎,所以,,故答案为.‎ ‎8. 【2016届贵州省贵阳六中高三5月高考模拟】曲线与直线所围成的封闭图形的面积为 .‎ ‎【答案】‎ ‎【解析】先根据题意画出图形,得到积分上限为1,积分下限为0,直线与曲线所围图形的面积 ,而,∴曲边梯形的面积是.‎ ‎9.【2016届山西省忻州一中等四校高三下第四次联考】已知函数的图象如图所示,它与轴在原点相切,且轴与函数图象所围成的区域(如图阴影部分)的面积为,则的值为_________ ‎ ‎【答案】‎ ‎10. 【2016年甘肃省兰州市高三实战考试】若,则 .‎ ‎【答案】.‎ ‎【解析】是一个常数,设为,则有,∴,解得,故填:. ‎ ‎11. 【福建省厦门双十中学2015届高三上学期期中】已知函数,则等于 .‎ ‎【答案】‎ ‎【解析】试题分析:‎ ‎.‎ ‎12. 【2015届山西省太原市五中高三5月月考理科】已知,则展开式中的常数项为_____.‎ ‎【答案】‎ ‎13. 【2015届山东省威海市高三第二次高考模拟理科】若, 则_________.‎ ‎【答案】‎ ‎【解析】因为是一常数,即可设,所以,的原函数,所以,即得,解得,即 ‎14. 【山东省潍坊市重点中学2015届高三上学期期中考试】如图,阴影区域的边界是直线及曲线,则这个区域的面积是 A 4 B 8 C D ‎ ‎【答案】B ‎【解析】由定积分的几何意义,得,故答案为B.‎ ‎15.【 2015年江西省五校协作体高三期中】已知集合,,则集合中的点所构成的平面区域的面积为( )‎ A. B.1 C. D.‎ ‎【答案】B ‎【一年原创真预测】‎ ‎1. 若的展开式中含有常数项,且的最小值为,则( )‎ A. B. C. D.‎ ‎【答案】C.‎ ‎【入选理由】本题考查二项式定理、定积分等基础知识,意在考查基本运算能力.将导数与二项式定理整合在一个问题中,有新意,故选此题.‎ ‎2.若的展开式中含有常数项,且的最小值为,则( )‎ A. B. C. D.‎ ‎【答案】C.‎ ‎【解析】的通项为,由得:,因为为正整数,所以当时,的最小值是,即a=5,则,又由定积分的定义可知表示圆心在原点且半径为5的圆上半部分的面积,‎ ‎∴,故选C.‎ ‎【入选理由】本题考查二项式定理、定积分等基础知识,意在考查基本运算能力.将导数与二项式定理整合在一个问题中,在高考中也出现过,故选此题.‎ ‎3.定积分,则展开式中的常数项为( )‎ A.1 B.-1 C.20 D.-20‎ ‎【答案】C ‎【解析】,所以a=1,展开式的通项为,令6-2r=0,即r=3,所以常数项为.‎ ‎【入选理由】本题考查二项式定理、定积分等基础知识,意在考查基本运算能力.将导数与二项式定理整合在一个问题中,这是常见题型,故选此题.‎ ‎4.设,若,则 ‎ .‎ ‎【答案】0. ‎ ‎【入选理由】本题考查二项式定理、定积分等基础知识,意在考查基本运算能力.将导数与二项式定理整合在一个问题中,此种出法,高考出题不多,有创意,故选此题.‎ ‎5.由直线,,曲线及轴所围成的封闭图形的面积是( )‎ A. B. C. D.‎ ‎【答案】A ‎【解析】由图可知封闭图形的面积为,故选A.‎ ‎【入选理由】本题考查定积分求面积等基础知识,意在考查学生逻辑思维能力和基本运算能力.利用定积分求面积,是经常出的题型,故选此题.‎
查看更多

相关文章

您可能关注的文档