- 2021-06-01 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考真题——理科数学新课标II精校版含答案 2014高考
2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ) 第Ⅰ卷 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M={0,1,2},N=,则=( ) A. {1} B. {2} C. {0,1} D. {1,2} 2.设复数,在复平面内的对应点关于虚轴对称,,则( ) A. - 5 B. 5 C. - 4+ i D. - 4 - i 3.设向量a,b满足|a+b|=,|a-b|=,则ab = ( ) A. 1 B. 2 C. 3 D. 5 4.钝角三角形ABC的面积是,AB=1,BC= ,则AC=( ) A. 5 B. C. 2 D. 1 5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. B. C. D. 7.执行右图程序框图,如果输入的x,t均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 7 8.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= A. 0 B. 1 C. 2 D. 3 9.设x,y满足约束条件,则的最大值为( ) A. 10 B. 8 C. 3 D. 2 10.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( ) A. B. C. D. 11.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1, 则BM与AN所成的角的余弦值为( ) A. B. C. D. 12.设函数.若存在的极值点满足,则m的取值范围是( ) A. B. C. D. 第Ⅱ卷 本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题 13.的展开式中,的系数为15,则a=________.(用数字填写答案) 14.函数的最大值为_________. 15.已知偶函数在单调递减,.若,则的取值范围是__________. 16.设点M(,1),若在圆O:上存在点N,使得∠OMN=45°,则的取值范围是________. 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知数列满足=1,. (Ⅰ)证明是等比数列,并求的通项公式; (Ⅱ)证明:. 18. (本小题满分12分) 如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积. 19. (本小题满分12分) 某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为: , 20. (本小题满分12分) 设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N. (Ⅰ)若直线MN的斜率为,求C的离心率; (Ⅱ)若直线MN在y轴上的截距为2,且,求a,b. 21. (本小题满分12分) 已知函数= (Ⅰ)讨论的单调性; (Ⅱ)设,当时,,求的最大值; (Ⅲ)已知,估计ln2的近似值(精确到0.001) 请考生在第22、23、24题中任选一题做答,如果多做,同按所做的第一题计分,做答时请写清题号. 22.(本小题满分10)选修4—1:几何证明选讲 如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E.证明: (Ⅰ)BE=EC; (Ⅱ)ADDE=2 23. (本小题满分10)选修4-4:坐标系与参数方程 在直角坐标系xoy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为,. (Ⅰ)求C的参数方程; (Ⅱ)设点D在C上,C在D处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标. 24. (本小题满分10)选修4-5:不等式选讲 设函数= (Ⅰ)证明:2; (Ⅱ)若,求的取值范围. 2014年普通高等学校招生全国统一考试 理科数学试题参考答案 一、 选择题 (1)D (2)A (3)A (4)B (5)A (6)C (7)D (8)D (9)B (10)D (11)C (12)C 二、填空题 (13) (14)1 (15) (16) 三、解答题 (17)解: (Ⅰ)由得 又,所以是首项为,公比为3的等比数列。 ,因此的通项公式为。 (Ⅱ)由(Ⅰ)知. 因为当时,,所以 于是 所以 . (18) 解: (Ⅰ)连结BD交AC于点O,连结EO. 因为ABCD为矩形,所以Q为BD的终点. 又E为PD的终点,所以EO//PB. EO平面AEC,PB平面AEC,所以PB//平面AEC. (Ⅱ)因为PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直。 如图,以A为坐标原点,的方向为轴的正方向,为单位长,建立空间直角坐标系A-,则 设则 设为平面ACE的法向量, 则 即 可取 又为平面DAE的法向量。 由题设,即 ,解得 因为E为PD的中点,所以三棱锥E-ACD的高为。三棱锥E-ACD的体积 (19)解: (Ⅰ)由所给数据计算得 =9+4+1+0+1+4+9=28 =(3)×(1.4)+(2)×(1)+(1)×(0.7)+0×0.1+1×0.5 +2×0.9+3×1.6 =14. , . 所求回归方程为 . (Ⅱ) 由(I)知,b=0.5﹥0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元。 将2015年的年份代号t=9带入(I)中的回归方程,得 故预测该地区2015年农村居民家庭人均纯收入为6.8千元. (20) 解:(I)根据及题设知 将代入,解得(舍去) 故C的离心率为. (Ⅱ)由题意,原点为的中点,∥轴,所以直线与轴的交点 是线段的中点,故,即 ① 由得。 设,由题意知,则 ,即 代入C的方程,得。 将①及代入②得 解得, 故. (21)解:(I)=,等号仅当时成立。 所以在 (Ⅱ)= = = (i)当时,≥0,等号仅当时成立,所以在单调递增。而=0,所以对任意; (ii)当时,若满足,即时 <0.而=0,因此当时,<0. 综上,b的最大值为2. (Ⅲ)由(Ⅱ)知,. 当b=2时,>0;>>0.6928; 当时,, =<0, <<0.6934 所以的近似值为0.693. (22)解: (I) 连结AB,AC.由题设知PA=PD,故∠PAD=∠PDA. 因为∠PDA=∠DAC+∠DCA ∠PAD=∠BAD+∠PAB ∠DCA=∠PAB, 所以∠DAC=∠BAD,从而。 因此BE=EC. (Ⅱ)由切割线定理得。 因为PA=PD=DC,所以DC=2PB,BD=PB。 由相交弦定理得, 所以. (23)解:(I)C的普通方程为. 可得C的参数方程为 (t为参数,) (Ⅱ)设D.由(I)知C是以G(1,0)为圆心,1为半径的上半圆。 因为C在点D处的切线与t垂直,所以直线GD与t的斜率相同, . 故D的直角坐标为,即。 (24)解: (I)由,有. 所以≥2. (Ⅱ) 当时a>3时, ,由<5得3<a<。 当0<a≤3时,=,由<5得<a≤3. 综上,a的取值范围是(,).查看更多