- 2021-05-31 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020年高中数学第三章导数及其应用3
3.2 导数的计算 [课时作业] [A组 基础巩固] 1.下列结论正确的是( ) A.若y=cos x,则y′=sin x B.若y=sin x,则y′=-cos x C.若y=,则y′=- D.若y=,则y′= 解析:A项,y=cos x,则y′=-sin x; 答案:C 2.函数y=x3·ax的导数是( ) A.(3+xln a)x2ax B.(3+ln a) x3ax C.(3+ln a)xax D.(3+ln a)ax 解析:∵y=x3·ax, ∴y′=(x3·ax)′=(x3)′ax+x3(ax)′ =3x2ax+x3·axln a =(3+xln a)x2ax.选A. 答案:A 3.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=( ) A.-1 B.-2 C.2 D.0 解析:由f(x)=ax4+bx2+c得f′(x)=4ax3+2bx,又f′(1)=2,所以4a+2b=2,即f′(-1)=-4a-2b=-(4a+2b)=-2. 答案:B 4.已知曲线y1=2-与y2=x3-x2+2x在x=x0处切线的斜率的乘积为3,则x0的值为( ) A.-2 B.2 C. D.1 解析:由题知y′1=,y′2=3x2-2x+2,所以两曲线在x=x0处切线的斜率分别为,3x 4 0-2x0+2,所以=3,所以x0=1. 答案:D 5.若函数f(x)=(x-1)(x-2)(x-3)(x-4)(x-5),且f′(x)是函数f(x)的导函数,则f′(1)=( ) A.24 B.-24 C.10 D.-10 解析:∵f′(x)=(x-1)′(x-2)(x-3)(x-4)(x-5)+(x-1)[(x-2)(x-3)(x-4)(x-5)]′ =(x-2)(x-3)(x-4)(x-5)+(x-1)[(x-2)(x-3)(x-4)(x-5)]′ ∴f′(1)=(-1)×(-2)×(-3)×(-4)=24. 答案:A 6.曲线y=在点Q(16,8)处的切线的斜率是________. 7.设f(x)=ax2-bsin x,且f ′(0)=1,f ′=,则a=________, b=________. 解析:∵f ′(x)=2ax-bcos x, f ′(0)=-b=1得b=-1, f ′=πa+=,得a=0. 答案:0 -1 8.(2015·高考陕西卷)设曲线y=ex在点(0,1)处的切线与曲线y=(x>0)上点P处的切线垂直,则P的坐标为________. 解析:y′=ex,曲线在点(0,1)处的斜率k1=e0=1,设P(m,n), y=(x>0)的导数为y′=-(x>0),曲线y=(x>0)在点P处的切线斜率k2=-(m>0),由题意知k1k2=-1,由此易得m=1,n=1,即点P的坐标为(1,1). 答案:(1,1) 9.求导. y=(x+1)2(x-1). 解析:法一 y′=[(x+1)2]′(x-1)+(x+1)2(x-1)′=2(x+1)(x-1)+(x+1)2=3x2+2x-1. 法二 y=(x2+2x+1)(x-1) 4 =x3+x2-x-1, y′=(x3+x2-x-1)′=3x2+2x-1. 10.设f (x)=a·ex+blnx,且f′(1)=e,f′(-1)=,求a,b的值. 解析:由f(x)=a·ex+bln x, ∴f′(x)=a·ex+, 根据题意应有 解得所以a,b的值分别是1,0. [B组 能力提升] 1.函数f(x)=excos x的图象在点(0,f(0))处的切线的倾斜角为( ) A.0 B. C.1 D. 解析:f′(x)=excos x-exsin x, ∴f′(0)=e0(cos 0-sin 0)=1, ∴切线的倾斜角为. 答案:B 2.若曲线y=x2+aln x(a>0)上任意一点处的切线斜率为k,若k的最小值为4,则此时该切点的坐标为( ) A.(1,1) B.(2,3) C.(3,1) D.(1,4) 解析:y=x2+aln x的定义域为(0,+∞), 由导数的几何意义知y′=2x+≥2=4,则a=2, 当且仅当x=1时等号成立,代入曲线方程得y=1, 故所求的切点坐标是(1,1). 答案:A 3.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x则f′(e)=________. 解析:∵f(x)=2xf′(e)+ln x, ∴f′(x)=2f′(e)+, 令x=e,得f′(e)=2f′(e)+,∴f′(e)=-. 答案:- 4.(2016·高考天津卷)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f 4 ′(0)的值为________. 解析:由题意得f′(x)=(2x+3)ex,则得f′(0)=3. 答案:3 5.求曲线y=在点(2,)处的切线方程. 解析:∵y=, ∴y′= =. ∴y′|x=2==-. 因此曲线y=在点(2,)处的切线方程为 y-=-(x-2), 即6x+25y-32=0. 6.求满足下列条件的函数f(x): (1)f(x)是三次函数,且f(0)=3,f′(0)=0,f′(1)=-3,f′(2)=0; (2)f′(x)是一次函数,x2f′(x)-(2x-1)f(x)=1. 解析:(1)设f(x)=ax3+bx2+cx+d(a≠0),则f′(x)=3ax2+2bx+c. 由f(0)=3,得d=3.由f′(0)=0,得c=0.由f′(1)=-3,f′(2)=0可建立方程组解得 所以f(x)=x3-3x2+3. (2)由f′(x)为一次函数可知f(x)为二次函数, 设f(x)=ax2+bx+c(a≠0),则f′(x)=2ax+b. 把f(x)、f′(x)代入方程得 x2(2ax+b)-(2x-1)·(ax2+bx+c)=1, 即(a-b)x2+(b-2c)x+c-1=0. 要使对任意x方程都成立,则需a=b,b=2c,c=1, 解得a=2,b=2,c=1,所以f(x)=2x2+2x+1. 4查看更多