- 2021-05-26 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考文数抛物线教师版
第24讲 抛物线 【2013年高考会这样考】 1.考查抛物线定义、标准方程. 2.考查抛物线的焦点弦问题. 3.与向量知识交汇考查抛物线的定义、方程、性质等. 基础梳理 1.抛物线的定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线. 其数学表达式:|MF|=d(其中d为点M到准线的距离). 2.抛物线的标准方程与几何性质 标准方程 y2=2px (p>0) y2=-2px (p>0) x2=2py (p>0) x2=-2py (p>0) p的几何意义:焦点F到准线l的距离 图形 顶点 O(0,0) 对称轴 y=0 x=0 焦点 F F F F 离心率 e=1 准线 方程 x=- x= y=- y= 范围 x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口方向 向右 向左 向上 向下 焦半径 |PF|=x0+ |PF|=-x0+ |PF|=y0+ |PF|=-y0+ 一个结论 焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F的距离|PF|=x0+. 两种方法 (1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程. (2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0). 双基自测 1.(人教A版教材习题改编)抛物线y2=8x的焦点到准线的距离是( C ). A.1 B.2 C.4 D.8 2.(2012·金华模拟)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( A ). A.x2=-12y B.x2=12y C.y2=-12x D.y2=12x 3.(2011·陕西)设抛物线的顶点在原点,准线方程x=-2,则抛物线的方程是( C ). A.y2=-8x B.y2=-4x C.y2=8x D.y2=4x 4.(2012·西安月考)设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( B ). A.4 B.6 C.8 D.12 5.(2012·长春模拟)抛物线y2=8x的焦点坐标是____(2,0)____. 考向一 抛物线的定义及其应用 【例1】►(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为( C ). A. B.1 C. D. 涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解. 【训练1】 (2011·济南模拟)已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( A ). A. B.3 C. D. 考向二 抛物线的标准方程及性质 【例2】►(1)(2011·南京模拟)以原点为顶点,坐标轴为对称轴,并且经过P(-2,-4)的抛物线方程为___ y2=-8x或x2=-y _____. (2)(2010·浙江)设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________. 求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程. 【训练2】 已知F为抛物线x2=2py(p>0)的焦点,M为其上一点,且|MF|=2p,则直线MF的斜率为( B ). A.- B.± C.- D.± 考向三 抛物线的综合应用 【例3】►(2011·江西)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9. (1)求该抛物线的方程; (2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值. 本题综合考查了直线与抛物线的位置关系、抛物线的标准方程与几何性质、平面向量知识,以及数形结合思想和化归思想.其中直线与圆锥曲线的相交问题一般是联立方程,设而不求,借助根的判别式及根与系数的关系进行转化. 【训练3】 设抛物线C:y2=4x,F为C的焦点,过F的直线L与C相交于A、B两点. (1)设L的斜率为1,求|AB|的大小;查看更多