- 2021-05-25 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
甘肃省定西市中考数学试题含答案
2014年甘肃省定西市中考数学试卷参考答案 一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填涂在答题卡上. 1.(3分)﹣3的绝对值是(A) A. 3 B. ﹣3 C. ﹣ D. 2.(3分)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为(B) A. 3.5×107 B. 3.5×108 C. 3.5×109 D. 3.5×1010 3.(3分)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(D) A. B. C. D. 4.(3分)下列计算错误的是(B) A. •= B. += C. ÷=2 D. =2 5.(3分)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有(C) A. 4个 B. 3个 C. 2个 D. 1个 6.(3分)下列图形中,是轴对称图形又是中心对称图形的是(D) A. B. C. D. 7.(3分)已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是(A) A. 相交 B. 相切 C. 相离 D. 无法判断 8.(3分)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为(B) A. x(5+x)=6 B. x(5﹣x)=6 C. x(10﹣x)=6 D. x(10﹣2x)=6 9.(3分)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点(D) A. (﹣1,﹣1) B. (1,﹣1) C. (﹣1,1) D. (1,1) 10.(3分)如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是(C) A. B. C. D. 二、填空题:本大题共8小题,每小题4分,共32分.把答案写在答题卡中的横线上. 11.(4分)分解因式:2a2﹣4a+2= 2(a﹣1)2 . 12.(4分)化简:= x+2 . 13.(4分)等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是 8 cm. 14.(4分)一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= 1 . 15.(4分)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C= 60° . 16.(4分)已知x、y为实数,且y=﹣+4,则x﹣y= ﹣1或﹣7 . 17.(4分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 12 . 18.(4分)观察下列各式: 13=12 13+23=32 13+23+33=62 13+23+33+43=102 … 猜想13+23+33+…+103= 552 . 三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤. 19.(6分)(2014•白银)计算:(﹣2)3+×(2014+π)0﹣|﹣|+tan260°. 解答: 解:原式=﹣8+﹣+3=﹣5. 20.(6分)阅读理解: 我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.[来源:学科网] 如果有>0,求x的解集. 解答: 解:由题意得2x﹣(3﹣x)>0, 去括号得:2x﹣3+x>0, 移项合并同类项得:3x>3, 把x的系数化为1得:x>1. 21.(8分)如图,△ABC中,∠C=90°,∠A=30°. (1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明); (2)连接BD,求证:BD平分∠CBA. 解答: (1)解:如图所示,DE就是要求作的AB边上的中垂线; (2)证明:∵DE是AB边上的中垂线,∠A=30°, ∴AD=BD, ∴∠ABD=∠A=30°, ∵∠C=90°, ∴∠ABC=90°﹣∠A=90°﹣30°=60°, ∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°, ∴∠ABD=∠CBD, ∴BD平分∠CBA. 22.(8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条只显示,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732) (1)求车架档AD的长; (2)求车座点E到车架档AB的距离(结果精确到1cm). 解答: 解:(1)∵在Rt△ACD中,AC=45cm,DC=60cm ∴AD==75(cm), ∴车架档AD的长是75cm; (2)过点E作EF⊥AB,垂足为F, ∵AE=AC+CE=(45+20)cm, ∴EF=AEsin75°=(45+20)sin75°≈62.7835≈63(cm), ∴车座点E到车架档AB的距离约是63cm. 23.(10分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1. (1)求m、n的值; (2)求直线AC的解析式. 解答: 解:(1)∵直y=mx与双曲线y=相交于A(﹣1,a)、B两点, ∴B点横坐标为1,即C(1,0), ∵△AOC的面积为1, ∴A(﹣1,2), 将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2; (2)设直线AC的解析式为y=kx+b, ∵y=kx+b经过点A(﹣1,2)、C(1,0) ∴, 解得k=﹣1,b=1, ∴直线AC的解析式为y=﹣x+1. 四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(8分)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y). (1)请你运用画树状图或列表的方法,写出点P所有可能的坐标; (2)求点(x,y)在函数y=﹣x+5图象上的概率. 解答: 解:列表得: y x (x,y) 1 2 3 4 1 (1,2) (1,3) (1,4) 2 (2,1) (2,3) (2,4) 3 (3,1) (3,2) (3,4) 4 (4,1) (4,2) (4,3) (1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种; (2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种, 即:(1,4),(2,3),(3,2),(4,1) ∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=. 25.(10分)某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题: (1)此次调查的学生人数为 200 ; (2)条形统计图中存在错误的是 C (填A、B、C、D中的一个),并在图中加以改正; (3)在图2中补画条形统计图中不完整的部分; (4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人? 解答: 解:(1)∵40÷20%=200, 80÷40%=200, ∴此次调查的学生人数为200; (2)由(1)可知C条形高度错误, 应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50, 即C的条形高度改为50; 故答案为:200;C; (3)D的人数为:200×15%=30; (4)600×(20%+40%)=360(人), 答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人. 26.(10分)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E. (1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形; (2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.) 解答: (1)证明:∵D、E分别是AB、AC边的中点, ∴DE∥BC,且DE=BC, 同理,GF∥BC,且GF=BC, ∴DE∥GF且DE=GF, ∴四边形DEFG是平行四边形; (2)解:当OA=BC时,平行四边形DEFG是菱形. 27.(10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.[来源:Zxxk.Com] (1)求证:DE是半圆⊙O的切线. (2)若∠BAC=30°,DE=2,求AD的长. 解答: (1)证明:连接OD,OE, ∵AB为圆O的直径, ∴∠ADB=∠BDC=90°, 在Rt△BDC中,E为斜边BC的中点, ∴DE=BE, 在△OBE和△ODE中, , ∴△OBE≌△ODE(SSS), ∴∠ODE=∠ABC=90°, 则DE为圆O的切线; (2)在Rt△ABC中,∠BAC=30°, ∴BC=AC, ∵BC=2DE=4, ∴AC=8, 又∵∠C=60°,DE=DC, ∴△DEC为等边三角形,即DC=DE=2, 则AD=AC﹣DC=6. 28.(12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3. (1)求点M、A、B坐标; (2)联结AB、AM、BM,求∠ABM的正切值; (3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标. 解答: 解:(1)抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3, 顶点M(1,﹣3), 令x=0,则y=(0﹣1)2﹣3=﹣2, 点A(0,﹣2), x=3时,y=(3﹣1)2﹣3=4﹣3=1, 点B(3,1); (2)过点B作BE⊥AO于E,过点M作MF⊥AO于M, ∵EB=EA=3, ∴∠EAB=∠EBA=45°, 同理可求∠FAM=∠FMA=45°, ∴△ABE∽△AMF,[来源:Z§xx§k.Com] ∴==, 又∵∠BAM=180°﹣45°×2=90°, ∴tan∠ABM==; (3)过点P作PH⊥x轴于H, ∵y=(x﹣1)2﹣3=x2﹣2x﹣2, ∴设点P(x,x2﹣2x﹣2), ①点P在x轴的上方时,=, 整理得,3x2﹣7x﹣6=0, 解得x1=﹣(舍去),x2=3, ∴点P的坐标为(3,1); ②点P在x轴下方时,=, 整理得,3x2﹣5x﹣6=0, 解得x1=(舍去),x2=, x=时,x2﹣2x﹣2=﹣×=﹣, ∴点P的坐标为(,﹣), 综上所述,点P的坐标为(3,1)或(,﹣). 查看更多