- 2021-05-22 发布 |
- 37.5 KB |
- 34页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考分类汇编圆专题只有题
圆专题复习中等难度满分班教师版 一.选择题(共16小题) 1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为( ) A.2 B.4 C.4 D.8 2.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是( ) A. B.1﹣ C.﹣1 D.1﹣ 3.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是( ) A.4 B. C. D. 4.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于( ) A.20° B.25° C.40° D.50° 5.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是( ) A.3 B.8 C. D.2 6.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( ) A.80° B.90° C.100° D.无法确定 7.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是( ) A.5:4 B.5:2 C.:2 D.: 8.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( ) A.cm B.cm C.cm或cm D.cm或cm A. B. C. D. 10.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( ) A. cm B.9 cm C.cm D.cm 11.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是( ) A.2 B. C. D. 12.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为( ) A.2 B.4 C.6 D.8 13.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是( ) A.80° B.160° C.100° D.80°或100° 14.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是( ) A.51° B.56° C.68° D.78° 15.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是( ) A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤5 16.下列说法中,结论错误的是( ) A.直径相等的两个圆是等圆 B.长度相等的两条弧是等弧 C.圆中最长的弦是直径 D.一条弦把圆分成两条弧,这两条弧可能是等弧 二.填空题(共5小题) 17.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为 . 18.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE= . 19.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是 . 20.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 度. 21.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 . 三.解答题(共9小题) 22.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB. (1)若CD=16,BE=4,求⊙O的直径; (2)若∠M=∠D,求∠D的度数. 23.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D. (Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长; (Ⅱ)如图②,若∠CAB=60°,求BD的长. 24.已知A,B,C,D是⊙O上的四个点. (1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD; (2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径. 25.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E. (1)若∠B=70°,求∠CAD的度数; (2)若AB=4,AC=3,求DE的长. 26.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C. (1)求证:CB∥PD; (2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度. 27.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD. (1)求证:AD=CD; (2)若AB=10,cos∠ABC=,求tan∠DBC的值. 28.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图). (1)求证:AC=BD; (2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长. 29.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F. (1)求证:DF为⊙O的切线; (2)若DE=,AB=,求AE的长. 30.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA. (1)当直线CD与半圆O相切时(如图①),求∠ODC的度数; (2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC, ①AE与OD的大小有什么关系?为什么? ②求∠ODC的度数. 圆专题复习中等难度满分班教师版 参考答案与试题解析 一.选择题(共16小题) 1.(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为( ) A.2 B.4 C.4 D.8 【考点】垂径定理;等腰直角三角形;圆周角定理.菁优网版权所有 【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算. 【解答】解:∵∠A=22.5°, ∴∠BOC=2∠A=45°, ∵⊙O的直径AB垂直于弦CD, ∴CE=DE,△OCE为等腰直角三角形, ∴CE=OC=2, ∴CD=2CE=4. 故选:C. 【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理. 2.(2015•黄冈中学自主招生)如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是( ) A. B.1﹣ C.﹣1 D.1﹣ 【考点】扇形面积的计算.菁优网版权所有 【分析】图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=. 【解答】解:如图: 正方形的面积=S1+S2+S3+S4;① 两个扇形的面积=2S3+S1+S2;② ②﹣①,得:S3﹣S4=S扇形﹣S正方形=﹣1=. 故选:A. 【点评】本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键. 3.(2014•泸州)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是( ) A.4 B. C. D. 【考点】垂径定理;一次函数图象上点的坐标特征;勾股定理.菁优网版权所有 【专题】计算题;压轴题. 【分析】 PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+. 【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图, ∵⊙P的圆心坐标是(3,a), ∴OC=3,PC=a, 把x=3代入y=x得y=3, ∴D点坐标为(3,3), ∴CD=3, ∴△OCD为等腰直角三角形, ∴△PED也为等腰直角三角形, ∵PE⊥AB, ∴AE=BE=AB=×4=2, 在Rt△PBE中,PB=3, ∴PE=, ∴PD=PE=, ∴a=3+. 故选:B. 【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质. 4.(2014•天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于( ) A.20° B.25° C.40° D.50° 【考点】切线的性质;圆心角、弧、弦的关系.菁优网版权所有 【专题】几何图形问题. 【分析】连接OA,根据切线的性质,即可求得∠C的度数. 【解答】解:如图,连接OA, ∵AC是⊙O的切线, ∴∠OAC=90°, ∵OA=OB, ∴∠B=∠OAB=25°, ∴∠AOC=50°, ∴∠C=40°. 故选:C. 【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点. 5.(2015•黄冈中学自主招生)将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是( ) A.3 B.8 C. D.2 【考点】圆周角定理;翻折变换(折叠问题);射影定理.菁优网版权所有 【专题】计算题. 【分析】若连接CD、AC,则根据同圆或等圆中,相等的圆周角所对的弦相等,求得AC=CD;过C作AB的垂线,设垂足为E,则DE=AD,由此可求出BE的长,进而可在Rt△ABC中,根据射影定理求出BC的长. 【解答】解:连接CA、CD; 根据折叠的性质,知所对的圆周角等于∠CBD, 又∵所对的圆周角是∠CBA, ∵∠CBD=∠CBA, ∴AC=CD(相等的圆周角所对的弦相等); ∴△CAD是等腰三角形; 过C作CE⊥AB于E. ∵AD=4,则AE=DE=2; ∴BE=BD+DE=7; 在Rt△ACB中,CE⊥AB,根据射影定理,得: BC2=BE•AB=7×9=63; 故BC=3. 故选A. 【点评】此题考查的是折叠的性质、圆周角定理、以及射影定理;能够根据圆周角定理来判断出△ACD是等腰三角形,是解答此题的关键. 6.(2015•兰州)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( ) A.80° B.90° C.100° D.无法确定 【考点】圆周角定理;坐标与图形性质.菁优网版权所有 【分析】由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°. 【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角, ∴∠AOB=∠ACB, ∵∠AOB=90°, ∴∠ACB=90°. 故选B. 【点评】此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB与∠ACB是优弧AB所对的圆周角. 7.(2014•义乌市)一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是( ) A.5:4 B.5:2 C.:2 D.: 【考点】正多边形和圆;勾股定理.菁优网版权所有 【专题】计算题;压轴题. 【分析】先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可. 【解答】解:如图1,连接OD, ∵四边形ABCD是正方形, ∴∠DCB=∠ABO=90°,AB=BC=CD=1, ∵∠AOB=45°, ∴OB=AB=1, 由勾股定理得:OD==, ∴扇形的面积是=π; 如图2,连接MB、MC, ∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形, ∴∠BMC=90°,MB=MC, ∴∠MCB=∠MBC=45°, ∵BC=1, ∴MC=MB=, ∴⊙M的面积是π×()2=π, ∴扇形和圆形纸板的面积比是π÷(π)=. 故选:A. 【点评】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中. 8.(2014•凉山州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( ) A.cm B.cm C.cm或cm D.cm或cm 【考点】垂径定理;勾股定理.菁优网版权所有 【专题】分类讨论. 【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论. 【解答】解:连接AC,AO, ∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm, ∴AM=AB=×8=4cm,OD=OC=5cm, 当C点位置如图1所示时, ∵OA=5cm,AM=4cm,CD⊥AB, ∴OM===3cm, ∴CM=OC+OM=5+3=8cm, ∴AC===4cm; 当C点位置如图2所示时,同理可得OM=3cm, ∵OC=5cm, ∴MC=5﹣3=2cm, 在Rt△AMC中,AC===2cm. 故选:C. 【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 9.(2014•武汉)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( ) A. B. C. D. 【考点】切线的性质;相似三角形的判定与性质;锐角三角函数的定义.菁优网版权所有 【专题】几何图形问题;压轴题. 【分析】(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可. 【解答】解:连接OA、OB、OP,延长BO交PA的延长线于点F. ∵PA,PB切⊙O于A、B两点,CD切⊙O于点E ∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB, ∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r, ∴PA=PB=. 在Rt△PBF和Rt△OAF中, , ∴Rt△PBF∽Rt△OAF. ∴===, ∴AF=FB, 在Rt△FBP中, ∵PF2﹣PB2=FB2 ∴(PA+AF)2﹣PB2=FB2 ∴(r+BF)2﹣()2=BF2, 解得BF=r, ∴tan∠APB===, 故选:B. 【点评】本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系. 10.(2015•大庆模拟)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( ) A. cm B.9 cm C.cm D.cm 【考点】垂径定理;勾股定理.菁优网版权所有 【专题】计算题;压轴题. 【分析】连接OA、OB、OE,证Rt△ADO≌Rt△BCO,推出OD=OC,设AD=a,则OD=a,由勾股定理求出OA=OB=OE=a,求出EF=FC=4cm,在△OFE中由勾股定理求出a,即可求出答案. 【解答】解: 连接OA、OB、OE, ∵四边形ABCD是正方形, ∴AD=BC,∠ADO=∠BCO=90°, ∵在Rt△ADO和Rt△BCO中 ∵, ∴Rt△ADO≌Rt△BCO, ∴OD=OC, ∵四边形ABCD是正方形, ∴AD=DC, 设AD=acm,则OD=OC=DC=AD=acm, 在△AOD中,由勾股定理得:OA=OB=OE=acm, ∵小正方形EFCG的面积为16cm2, ∴EF=FC=4cm, 在△OFE中,由勾股定理得:=42+, 解得:a=﹣4(舍去),a=8, a=4(cm), 故选C. 【点评】本题考查了全等三角形的性质和判定,勾股定理的应用,主要考查学生运用定理进行计算的能力,用的数学思想是方程思想. 11.(2014•济南)如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是( ) A.2 B. C. D. 【考点】垂径定理;等边三角形的性质;矩形的性质;解直角三角形.菁优网版权所有 【分析】连接BD、OC,根据矩形的性质得∠BCD=90°,再根据圆周角定理得BD为⊙O的直径,则BD=2;由ABC为等边三角形得∠A=60°,于是利用圆周角定理得到∠BOC=2∠A=120°,易得∠CBD=30°,在Rt△BCD中,根据含30°的直角三角形三边的关系得到CD=BD=1,BC=CD=,然后根据矩形的面积公式求解. 【解答】解:连结BD、OC,如图, ∵四边形BCDE为矩形, ∴∠BCD=90°, ∴BD为⊙O的直径, ∴BD=2, ∵△ABC为等边三角形, ∴∠A=60°, ∴∠BOC=2∠A=120°, 而OB=OC, ∴∠CBD=30°, 在Rt△BCD中,CD=BD=1,BC=CD=, ∴矩形BCDE的面积=BC•CD=. 故选:B. 【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理、等边三角形的性质和矩形的性质. 12.(2014•舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为( ) A.2 B.4 C.6 D.8 【考点】垂径定理;勾股定理.菁优网版权所有 【专题】计算题. 【分析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长. 【解答】解:∵CE=2,DE=8, ∴OB=5, ∴OE=3, ∵AB⊥CD, ∴在△OBE中,得BE=4, ∴AB=2BE=8. 故选:D. 【点评】本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握. 13.(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是( ) A.80° B.160° C.100° D.80°或100° 【考点】圆周角定理.菁优网版权所有 【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数. 【解答】解:如图,∵∠AOC=160°, ∴∠ABC=∠AOC=×160°=80°, ∵∠ABC+∠AB′C=180°, ∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°. ∴∠ABC的度数是:80°或100°. 故选D. 【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解. 14.(2014•贵港)如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是( ) A.51° B.56° C.68° D.78° 【考点】圆心角、弧、弦的关系.菁优网版权所有 【专题】数形结合. 【分析】由==,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数. 【解答】解:如图,∵==,∠COD=34°, ∴∠BOC=∠EOD=∠COD=34°, ∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°. 又∵OA=OE, ∴∠AEO=∠OAE, ∴∠AEO=×(180°﹣78°)=51°. 故选:A. 【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用. 15.(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是( ) A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤5 【考点】直线与圆的位置关系;勾股定理;垂径定理.菁优网版权所有 【分析】此题可以首先计算出当AB与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8.若大圆的弦AB与小圆有公共点,即相切或相交,此时AB≥8;又因为大圆最长的弦是直径10,则8≤AB≤10. 【解答】解:当AB与小圆相切, ∵大圆半径为5,小圆的半径为3, ∴AB=2=8. ∵大圆的弦AB与小圆有公共点,即相切或相交, ∴8≤AB≤10. 故选:A. 【点评】本题综合考查了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析有公共点时的弦长. 16.(2014•长宁区一模)下列说法中,结论错误的是( ) A.直径相等的两个圆是等圆 B.长度相等的两条弧是等弧 C.圆中最长的弦是直径 D.一条弦把圆分成两条弧,这两条弧可能是等弧 【考点】圆的认识.菁优网版权所有 【分析】利用圆的有关定义进行判断后利用排除法即可得到正确的答案; 【解答】解:A、直径相等的两个圆是等圆,正确,不符合题意; B、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意; C、圆中最长的弦是直径,正确,不符合题意; D、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意, 故选:B. 【点评】本题考查了圆的认识,了解圆中有关的定义及性质是解答本题的关键. 二.填空题(共5小题) 17.(2014•张家界)如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为 . 【考点】垂径定理;轴对称的性质.菁优网版权所有 【分析】A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值 【解答】解:连接OA,OB,OC,作CH垂直于AB于H. 根据垂径定理,得到BE=AB=4,CF=CD=3, ∴OE===3, OF===4, ∴CH=OE+OF=3+4=7, BH=BE+EH=BE+CF=4+3=7, 在直角△BCH中根据勾股定理得到BC=7, 则PA+PC的最小值为. 故答案为: 【点评】正确理解BC的长是PA+PC的最小值,是解决本题的关键. 18.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE= 50° . 【考点】圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.菁优网版权所有 【专题】几何图形问题. 【分析】如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题. 【解答】解:如图,连接BE. ∵BC为⊙O的直径, ∴∠CEB=∠AEB=90°, ∵∠A=65°, ∴∠ABE=25°, ∴∠DOE=2∠ABE=50°,(圆周角定理) 故答案为:50°. 【点评】本题考查了圆的认识及三角形的内角和定理等知识,难度不大. 19.(2014•陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是 4 . 【考点】垂径定理;圆周角定理.菁优网版权所有 【专题】压轴题. 【分析】过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4. 【解答】解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图, ∵∠AMB=45°, ∴∠AOB=2∠AMB=90°, ∴△OAB为等腰直角三角形, ∴AB=OA=2, ∵S四边形MANB=S△MAB+S△NAB, ∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大, 即M点运动到D点,N点运动到E点, 此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4. 故答案为:4. 【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理. 20.(2014•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 60 度. 【考点】圆周角定理;平行四边形的性质.菁优网版权所有 【专题】计算题. 【分析】由四边形OABC为平行四边形,根据平行四边形对角相等,即可得∠B=∠AOC,由圆周角定理,可得∠AOC=2∠ADC,又由内接四边形的性质,可得∠B+∠ADC=180°,即可求得∠B=∠AOC=120°,∠ADC=60°,然后由三角形外角的性质,即可求得∠OAD+∠OCD的度数. 【解答】解:连接DO并延长, ∵四边形OABC为平行四边形, ∴∠B=∠AOC, ∵∠AOC=2∠ADC, ∴∠B=2∠ADC, ∵四边形ABCD是⊙O的内接四边形, ∴∠B+∠ADC=180°, ∴3∠ADC=180°, ∴∠ADC=60°, ∴∠B=∠AOC=120°, ∵∠1=∠OAD+∠ADO,∠2=∠OCD+∠CDO, ∴∠OAD+∠OCD=(∠1+∠2)﹣(∠ADO+∠CDO)=∠AOC﹣∠ADC=120°﹣60°=60°. 故答案为:60. 【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行四边形的性质以及三角形外角的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法. 21.(2015•甘南州)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是 6 . 【考点】垂径定理;勾股定理.菁优网版权所有 【专题】压轴题. 【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解. 【解答】解:连接AO, ∵半径是5,CD=1, ∴OD=5﹣1=4, 根据勾股定理, AD===3, ∴AB=3×2=6, 因此弦AB的长是6. 【点评】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键. 三.解答题(共9小题) 22.(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB. (1)若CD=16,BE=4,求⊙O的直径; (2)若∠M=∠D,求∠D的度数. 【考点】垂径定理;勾股定理;圆周角定理.菁优网版权所有 【专题】几何综合题. 【分析】(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论; (2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果; 【解答】解:(1)∵AB⊥CD,CD=16, ∴CE=DE=8, 设OB=x, 又∵BE=4, ∴x2=(x﹣4)2+82, 解得:x=10, ∴⊙O的直径是20. (2)∵∠M=∠BOD,∠M=∠D, ∴∠D=∠BOD, ∵AB⊥CD, ∴∠D=30°. 【点评】本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧. 23.(2014•天津)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D. (Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长; (Ⅱ)如图②,若∠CAB=60°,求BD的长. 【考点】圆周角定理;等边三角形的判定与性质;勾股定理.菁优网版权所有 【专题】证明题. 【分析】(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5; (Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5. 【解答】解:(Ⅰ)如图①,∵BC是⊙O的直径, ∴∠CAB=∠BDC=90°. ∵在直角△CAB中,BC=10,AB=6, ∴由勾股定理得到:AC===8. ∵AD平分∠CAB, ∴=, ∴CD=BD. 在直角△BDC中,BC=10,CD2+BD2=BC2, ∴易求BD=CD=5; (Ⅱ)如图②,连接OB,OD. ∵AD平分∠CAB,且∠CAB=60°, ∴∠DAB=∠CAB=30°, ∴∠DOB=2∠DAB=60°. 又∵OB=OD, ∴△OBD是等边三角形, ∴BD=OB=OD. ∵⊙O的直径为10,则OB=5, ∴BD=5. 【点评】本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形. 24.(2014•厦门)已知A,B,C,D是⊙O上的四个点. (1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD; (2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径. 【考点】垂径定理;勾股定理;圆周角定理.菁优网版权所有 【专题】几何综合题;压轴题. 【分析】(1)根据题意不难证明四边形ABCD是正方形,结论可以得到证明; (2)连结DO,延长交圆O于F,连结CF、BF.根据直径所对的圆周角是直角,得∠DCF=∠DBF=90°,则BF∥AC,根据平行弦所夹的弧相等,得弧CF=弧AB,则CF=AB.根据勾股定理即可求解. 【解答】解:(1)∵∠ADC=∠BCD=90°, ∴AC、BD是⊙O的直径, ∴∠DAB=∠ABC=90°, ∴四边形ABCD是矩形, ∵AD=CD, ∴四边形ABCD是正方形, ∴AC⊥BD; (2)连结DO,延长交圆O于F,连结CF、BF. ∵DF是直径, ∴∠DCF=∠DBF=90°, ∴FB⊥DB, 又∵AC⊥BD, ∴BF∥AC,∠BDC+∠ACD=90°, ∵∠FCA+∠ACD=90° ∴∠BDC=∠FCA=∠BAC ∴等腰梯形ACFB ∴CF=AB. 根据勾股定理,得 CF2+DC2=AB2+DC2=DF2=20, ∴DF=, ∴OD=,即⊙O的半径为. 【点评】此题综合运用了圆周角定理的推论、垂径定理的推论、等弧对等弦以及勾股定理.学会作辅助线是解题的关键. 25.(2014•无锡)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E. (1)若∠B=70°,求∠CAD的度数; (2)若AB=4,AC=3,求DE的长. 【考点】圆周角定理;平行线的性质;三角形中位线定理.菁优网版权所有 【专题】几何图形问题. 【分析】(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得; (2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得. 【解答】解:(1)∵AB是半圆O的直径, ∴∠ACB=90°, 又∵OD∥BC, ∴∠AEO=90°,即OE⊥AC, ∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°. ∵OA=OD, ∴∠DAO=∠ADO===55° ∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°; (2)在直角△ABC中,BC===. ∵OE⊥AC, ∴AE=EC, 又∵OA=OB, ∴OE=BC=. 又∵OD=AB=2, ∴DE=OD﹣OE=2﹣. 【点评】本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键. 26.(2014•大庆)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C. (1)求证:CB∥PD; (2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度. 【考点】垂径定理;圆周角定理;弧长的计算.菁优网版权所有 【专题】几何图形问题. 【分析】(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD; (2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度. 【解答】解:(1)∵∠PBC=∠D,∠PBC=∠C, ∴∠C=∠D, ∴CB∥PD; (2)连结OC,OD. ∵AB是⊙O的直径,弦CD⊥AB于点E, ∴=, ∵∠PBC=∠DCB=22.5°, ∴∠BOC=∠BOD=2∠C=45°, ∴∠AOC=180°﹣∠BOC=135°, ∴劣弧AC的长为:=. 【点评】本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键. 27.(2014•沈阳)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD. (1)求证:AD=CD; (2)若AB=10,cos∠ABC=,求tan∠DBC的值. 【考点】圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.菁优网版权所有 【专题】几何综合题. 【分析】(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论; (2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案. 【解答】(1)证明:∵AB为⊙O的直径, ∴∠ACB=90°, ∵OD∥BC, ∴∠AEO=∠ACB=90°, ∴OD⊥AC, ∴=, ∴AD=CD; (2)解:∵AB=10, ∴OA=OD=AB=5, ∵OD∥BC, ∴∠AOE=∠ABC, 在Rt△AEO中, OE=OA•cos∠AOE=OA•cos∠ABC=5×=3, ∴DE=OD﹣OE=5﹣3=2, ∴AE===4, 在Rt△AED中, tan∠DAE===, ∵∠DBC=∠DAE, ∴tan∠DBC=. 【点评】此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用. 28.(2014•湖州)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图). (1)求证:AC=BD; (2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长. 【考点】垂径定理;勾股定理.菁优网版权所有 【专题】几何综合题. 【分析】(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD; (2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论. 【解答】(1)证明:过O作OE⊥AB于点E, 则CE=DE,AE=BE, ∴BE﹣DE=AE﹣CE,即AC=BD; (2)解:由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA, ∴OE=6, ∴CE===2,AE===8, ∴AC=AE﹣CE=8﹣2. 【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 29.(2015•泰安模拟)如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F. (1)求证:DF为⊙O的切线; (2)若DE=,AB=,求AE的长. 【考点】切线的判定;勾股定理.菁优网版权所有 【专题】计算题;证明题. 【分析】(1)连接AD,OD,则∠ADB=90°,AD⊥BC;又因为AB=AC,所以BD=DC,OA=OB,OD∥AC,易证DF⊥OD,故DF为⊙O的切线; (2)连接BE交OD于G,由于AC=AB,AD⊥BCED⊥BD,故∠EAD=∠BAD,=,ED=BD,OE=OB; 故OD垂直平分EB,EG=BG,因为AO=BO,所以OG=AE,在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2,代入数值即可求出AE的值. 【解答】(1)证明:连接AD,OD; ∵AB为⊙O的直径, ∴∠ADB=90°, 即AD⊥BC; ∵AB=AC, ∴BD=DC. ∵OA=OB, ∴OD∥AC. ∵DF⊥AC, ∴DF⊥OD. ∴∠ODF=∠DFA=90°, ∴DF为⊙O的切线. (2)解:连接BE交OD于G; ∵AC=AB,AD⊥BC,ED=BD, ∴∠EAD=∠BAD. ∴. ∴ED=BD,OE=OB. ∴OD垂直平分EB. ∴EG=BG. 又AO=BO, ∴OG=AE. 在Rt△DGB和Rt△OGB中, BD2﹣DG2=BO2﹣OG2 ∴()2﹣(﹣OG)2=BO2﹣OG2 解得:OG=. ∴AE=2OG=. 【点评】本题比较复杂,涉及到切线的判定定理及勾股定理,等腰三角形的性质,具有很强的综合性. 30.(2014•三明)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA. (1)当直线CD与半圆O相切时(如图①),求∠ODC的度数; (2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC, ①AE与OD的大小有什么关系?为什么? ②求∠ODC的度数. 【考点】直线与圆的位置关系;平行线的性质;全等三角形的判定与性质.菁优网版权所有 【专题】几何综合题. 【分析】(1)连接OC,因为CD是⊙O的切线,得出∠OCD=90°,由OC=CD,得出∠ODC=∠COD,即可求得. (2)连接OE, ①证明△AOE≌△OCD,即可得AE=OD; ②利用等腰三角形及平行线的性质,可求得∠ODC的度数. 【解答】解:(1)如图①,连接OC, ∵OC=OA,CD=OA, ∴OC=CD, ∴∠ODC=∠COD, ∵CD是⊙O的切线, ∴∠OCD=90°, ∴∠ODC=45°; (2)如图②,连接OE. ∵CD=OA,∴CD=OC=OE=OA, ∴∠1=∠2,∠3=∠4. ∵AE∥OC, ∴∠2=∠3. 设∠ODC=∠1=x,则∠2=∠3=∠4=x. ∴∠AOE=∠OCD=180°﹣2x. ①AE=OD.理由如下: 在△AOE与△OCD中, ∴△AOE≌△OCD(SAS), ∴AE=OD. ②∠6=∠1+∠2=2x. ∵OE=OC,∴∠5=∠6=2x. ∵AE∥OC, ∴∠4+∠5+∠6=180°,即:x+2x+2x=180°, ∴x=36°. ∴∠ODC=36°. 【点评】本题考查了切线性质,全等三角形,等腰三角形的性质以及平行线的性质等,作出辅助线是解题的关键. 查看更多