【数学】2019届一轮复习人教A版(文)1-2命题及其关系、充分条件与必要条件学案
1.2 命题及其关系、充分条件与必要条件
最新考纲
考情考向分析
1.理解命题的概念.
2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.
3.理解必要条件、充分条件与充要条件的含义.
命题的真假判断和充分必要条件的判定是考查的主要形式,多与集合、函数、不等式、立体几何中的线面关系相交汇,考查学生的推理能力,题型为选择、填空题,低档难度.
1.命题
用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.
2.四种命题及其相互关系
(1)四种命题间的相互关系
(2)四种命题的真假关系
①两个命题互为逆否命题,它们具有相同的真假性;
②两个命题为互逆命题或互否命题,它们的真假性没有关系.
3.充分条件、必要条件与充要条件的概念
若p⇒q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件
p⇒q且q⇏p
p是q的必要不充分条件
p⇏q且q⇒p
p是q的充要条件
p⇔q
p是q的既不充分也不必要条件
p⇏q且q⇏p
知识拓展
从集合的角度理解充分条件与必要条件
若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为:
(1)若A⊆B,则p是q的充分条件;
(2)若A⊇B,则p是q的必要条件;
(3)若A=B,则p是q的充要条件;
(4)若AB,则p是q的充分不必要条件;
(5)若AB,则p是q的必要不充分条件;
(6)若AB且A⊉B,则p是q的既不充分也不必要条件.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)“对顶角相等”是命题.( √ )
(2)命题“若p,则q”的否命题是“若p,则綈q”.( × )
(3)当q是p的必要条件时,p是q的充分条件.( √ )
(4)当p是q的充要条件时,也可说成q成立当且仅当p成立.( √ )
(5)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.( √ )
题组二 教材改编
2.[P8T3]下列命题是真命题的是( )
A.矩形的对角线相等
B.若a>b,c>d,则ac>bd
C.若整数a是素数,则a是奇数
D.命题“若x2>0,则x>1”的逆否命题
答案 A
3.[P12T2(2)]“x-3=0”是“(x-3)(x-4)=0”的______条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)
答案 充分不必要
题组三 易错自纠
4.命题“若x2>y2,则x>y”的逆否命题是( )
A.若x
y,则x2>y2 D.若x≥y,则x2≥y2
答案 B
解析 根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.
5.设x>0,y∈R,则“x>y”是“x>|y|”的( )
A.充要条件 B.充分不必要条件
C.必要不充分条件 D.既不充分也不必要条件
答案 C
解析 x>y⇏x>|y|(如x=1,y=-2),
但当x>|y|时,能有x>y.
∴“x>y”是“x>|y|”的必要不充分条件.
6.已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.
答案 (-∞,2]
解析 由已知,可得{x|2<x<3}{x|x>a},
∴a≤2.
题型一 命题及其关系
1.下列命题是真命题的是( )
A.若=,则x=y B.若x2=1,则x=1
C.若x=y,则= D.若x<y,则x2<y2
答案 A
2.某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是( )
A.不拥有的人们会幸福 B.幸福的人们不都拥有
C.拥有的人们不幸福 D.不拥有的人们不幸福
答案 D
3.原命题为“△ABC中,若cosA<0,则△ABC为钝角三角形”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )
A.真,真,真 B.假,假,真
C.真,真,假 D.真,假,假
答案 B
解析 若cosA<0,A为钝角,则△ABC为钝角三角形,所以原命题为真,则逆否命题也为真;△ABC为钝角三角形,可能是B或者C为钝角,A可能为锐角,cosA>0.所以逆命题为假,则否命题也为假.故选B.
4.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是______________.
答案 若方程x2+x-m=0没有实根,则m≤0
思维升华 (1)写一个命题的其他三种命题时,需注意:
①对于不是“若p,则q”形式的命题,需先改写;
②若命题有大前提,写其他三种命题时需保留大前提.
(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可.
(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.
题型二 充分必要条件的判定
典例 (1)“0≤m≤1”是“函数f(x)=cosx+m-1有零点”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案 A
解析 方法一 若0≤m≤1,则0≤1-m≤1,
∴cosx=1-m有解.
要使函数f(x)=cosx+m-1有零点,
只需|m-1|≤1,解得0≤m≤2,故选A.
方法二 函数f(x)=cosx+m-1有零点,
则|m-1|≤1,解得0≤m≤2,
∵{m|0≤m≤1}{m|0≤m≤2}.
∴“0≤m≤1”是“函数f(x)=cosx+m-1”有零点的充分不必要条件.
(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案 A
解析 由5x-6>x2,得21且y>1,q:实数x,y满足x+y>2,则p是q的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)
答案 充分不必要
解析 当x>1,y>1时,x+y>2一定成立,即p⇒q,
当x+y>2时,可令x=-1,y=4,即q⇏p,
故p是q的充分不必要条件.
11.已知命题p:a≤x≤a+1,命题q:x2-4x<0,若p是q的充分不必要条件,则a的取值范围是________.
答案 (0,3)
解析 令M={x|a≤x≤a+1},
N={x|x2-4x<0}={x|0<x<4}.
∵p是q的充分不必要条件,∴MN,
∴解得0<a<3.
12.有下列几个命题:
①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.
其中真命题的序号是________.
答案 ②③
解析 ①原命题的否命题为“若a≤b,则a2≤b2”,错误;②原命题的逆命题为“若x,y互为相反数,则x+y=0”,正确;③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.
13.(2017·邵阳二模)“m>1”是“函数f(x)=3x+m-3在区间[1,+∞)上无零点”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案 A
解析 函数f(x)=3x+m-3在区间[1,+∞)上无零点,则31+m>3,即m+1>,解得m>,
故“m>1”是“函数f(x)=3x+m-3在区间[1,+∞)上无零点”的充分不必要条件,故选A.
14.已知条件p:2x2-3x+1≤0,条件q:x2-(2a+1)x+a(a+1)≤0.若綈p是綈q的必要不充分条件,则实数a的取值范围是________.
答案
解析 方法一 命题p为,
命题q为{x|a≤x≤a+1}.
綈p对应的集合A=,
綈q对应的集合B={x|x>a+1或x0,即2n+1>2λ对任意的n∈N*都成立,于是可得3>2λ,即λ<.
故所求λ的取值范围是.
16.设a,b为正数,则“a-b>1”是“a2-b2>1”的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)
答案 充分不必要
解析 ∵a-b>1,即a>b+1.又∵a,b为正数,
∴a2>(b+1)2=b2+1+2b>b2+1,即a2-b2>1成立;反之,当a=,b=1时,满足a2-b2>1,但a-b>1不成立.所以“a-b>1”是“a2-b2>1”的充分不必要条件.