- 2021-05-22 发布 |
- 37.5 KB |
- 102页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教小学六年级数学全册第十二册
教学进度表 周次 项目 起止时间 教学内容 1 3.1---5 比例的基本性质 2 8---12 正反比例 3 15---19 整理和复习 4 22---26 圆柱 统计表 5 29---4.2 圆锥 6 5---9 整理和复习 7 12---16 统计表 8 19---23 统计图 9 26---30 整理和复习 10 5.1---7 休息 11 10---14 数和数和运算 12 17---21 代数和初步知识 13 24---28 应用题 14 31---6.4 量和计量 15 7---11 几何初步图形 16 14---18 简单统计 17 21---25 复习 18 28---7.2 复习 19 5---9 考试 20 12---16 第十二册数学教学总目标 1、 使学生理解比例意义和基本性质,会解比例,会看比例尺,理解正比例、反比例的意义,能够判断两种量是否成正比例或反比例,会用比例尺知识解答简单的应用题。 2、使学生认识圆柱、圆锥的特征,初步认识球半径和直径,会计算圆柱的表面积和圆柱圆锥的体积。 3、使学生会看制作含有百分数的复试统计表,了解简单统计图的绘制方法,会看和初步绘制简单的统计图。 4、使学生通过系统的整理和复习,加深对小学阶段所学的数学知识的理解和掌握,更好的培养比较合理的、灵活的计算能力,发展学生的思维能力,空间能力。 提高综合运用所学数学知识解决简单的实际问题的能力。 (一)比例 单元目标: 1、学生理解比例的意义和比例的基本性质,会解比例。 2、使学生理解正反比例的意义,能够正确判断成正反比例的量,会用比知识解答比较容易的应用题。 3、使学生能够应用比例的知识,求出平面图的比例尺以及根据比例尺求出图上距离或实际距离。 4、通过比例的教学,使学生进一步受到辨证唯物主义的观点启蒙教育。 1、比例的意义和基本性质 教学内容:教科书第1-2页比例的意义和基本性质,练习一的第l~3题。 教学目的:使学生理解比例的意义和基本性质。 教学重点;比例的意义和基本性质 教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。 教学过程: 一、教学比例的意义 1.复习。 (1)教师:请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。 教师把学生举的例子板书出来,并注明比的各部分的名称。 (2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。 12:16 4.5:2.7 10:6 学生求出各比的比值后,再提问: “请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。) 教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义) 2.教学比例的意义。 (l)出示例1:指名学生读题。 教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。) 时间(时) 2 5 路程(千米) 80 200 “你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书: 第一次所行驶的路程和时间的比是80:2 第二次所行驶的路程和时间的比是200:5 然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40,200:5=40。让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40。) “所以这两个比怎么样?(这两个比相等。) 教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2=200:5)像这样(指着这个式子和复习题的式子4.5:2.7=10:6)表示两个比相等的式子叫做比例。 指着比例式80:2=200:5,提问: “谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。 “从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?” 根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如 判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12=,35: 42=,所以 10:12=35:42。(以上举例边说边板书。) (2)比较“比”和“比例”两个概念。 教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢? 引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。 (3)巩固练习。 ①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。) 6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3 :0.6 学生判断后,指名说出判断的根据。 ②做第2页的“做一做”。 让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。 ③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。 ④做练习一的第3题。 对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。 第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。 二、教学比例的基本性质 1.教学比例各部分的名称。 教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书第10页看第6行到9行。看看什么叫比例的项、外项、内项。(学生看书时,教师板书:80:2=200:5) 指名让学生指出板书出的比例的外项、内项。随着学生的回答教师接着板书如下: 2.教学比例的基本性质。 教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书: 两个外项的积是80×5=400 两个内项的积是 2×200=400 “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都成立都是这样的呢?”让学生分组计算前面判断过的比例式。 通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整。 最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。 “如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成: “这个比例的外项是哪两个数呢?内项呢?” “因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: 学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书:80×5=2×200 3.巩固练习。 教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。 学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。 (1)应用比例的基本性质判断3:4和6:8能不能组成比例。 教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积: 3×8= 24)和两个内项的积(板书:两个内项的积: 4 × 6=24)。因为 3 × 8=4 × 6(板书出来),也就是说两个外项的积等于两个内项的积,所以3:4和6:8可以组成比例。(边说边板书:3:4=6:8) (2)做第3页“做一做”的第1、题。 三、小结 教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么? 四、练习: 1、 说说比和比例有什么区别 2、填空 3、先应用比的意义,再应用比的基本性质,判断下面那组中的两个比可以组成比例。 (1) 6:9和 9 :12 (2)1.4 :2 和 7:10 (3) 0.5 :0 .2和5/8 :1/4 4、下面的四个数可以组成比例吗?把组成的比例写出来。(能写成几组就组几组) 2 、3 、4和6 四、作业 练习一的第3题。 2、解比例 教学内容:教科书第3页解比例的内容,练习一的第4~9题。 教学目的:使学生学会解比例的方法,进一步理解和掌握比例的基本性质。 教学重点:使学生掌握解比例的方法,学会解比例。 教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。 教学过程: 一、导人新课 教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识,这节课我们要学习解比例。(板书课题) 二、新课 教师:什么叫做解比例呢?我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。 1.教学例2。 出示例2: 让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。再回答: “根据比例的基本性质可以把它变成什么形式?”教师板书:3x=8×15。 “这变成了什么?”(方程。) 教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(在3x前加上:解:) “怎样解这个方程?”(根据乘法各部分间的关系,把x看作一个因数,因为一个因=积÷另一个因数,可以求出x。)教师板书: 教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。 2.教学例3。 出示例3:解比例 9/X = 4.5/0.8 提问: “这个比例与例 2有什么不同?”(这个比例是分数形式。) “这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?”(能,根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程。) 学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:4.5x=9×0.8 “这个方程你们会解吗?” 让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。 3.总结解比例的过程。 提问: “刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?”(根据比例的基本性质把比例变成方程。) “变成方程以后,再怎么做?”(根据以前学过的解方程的方法求解。) “从上面的过程可以看出,在解比例的过程中哪一步是新知识?”(根据比例的基本性质把比例变成方程。) 4.做第3页“做一做”的第2题。 学生独立解答,订正时,让学生说说是怎么做的。 三、巩固练习 做练习一的第4~9题。 1.做第4题的第(6)题时,要提醒学生先把带分数化成假分数再做。做完后,选一、二题让学生说说是怎样求解的。 2.第5题,可指名学生读题,题目告诉了什么,要求什么,然后同桌同学讨论一下,这道题可以用什么知识解答。再选几名代表出答。之后,让学生独立解答。 3.独立完成第6、7题。 四、学有余力的学生做第8*、9*题和思考题 做第8“题的第(1)题,教师可以这样引导学生:这道题需要逆用比例的基本性质,比例的基本性质是:在一个比例里,两个内项的积等于两个外项的积。现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项,这样就能推出比例式了。如果把左边的两个数当作比例的内项,那么右边的两个数就应作为比例的外项,也可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。 如果把3、40作为外项,有下面这些比例式: 3:8=15:40 40:15=8:3 3:15=8:40 40:8=15:3 如果把3、40作为内项,有下面这些比例式: 15:3=40:8 8:40=3:15 15:40=3:8 8:3=40:15 可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。 学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。 3.比例尺 教学内容:教科书第6~8页的例4~例6,练习二的第1题。 教学目的:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。 教学重点:理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。 教学难点:设未知数时长度单位的使用。 教具准备:教师准备一些比例尺不同的地图或本校、本地的平面图。 教学过程: 一、复习 二、新课 教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。 1.教学比例尺的意义。 (1)教学例4。 出示例4: 让学生读题。指名回答: “这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。) “要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离 :实际距离 “图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下: 图上距离 :实际距离 10厘米 : 10米 “10厘米和10米的单位相同吗?能直接化简吗?” 教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。 “是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。) “10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。 “现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“ :”,板书成如下形式: 图上距离 :实际距离 10 : 1000 请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。 然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离 :实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或 图上距离 =比例尺 实际距离 图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。 教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。 最后教师指出: ①比例尺与一般的尺不同,这是一个比,不应带计量单位。 ②求比例尺时,前、后项的长度单位一定要化成同级单位。如 1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。 ③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100= (2)巩固练习。 让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“ l”。 2.教学根据比例尺求图上距离或实际距离。 教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。 (1)教学例5。 出示例5: 指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。) 教师启发:因为=比例尺,要求实际距离可以用解比例的方法来求。 “这道题的图上距离是多少?”板书:15 “实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。 “因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。 “比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式: 15 = 1 x 6000000 指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答: “现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。 之后,再回忆一下解答过程。 (2)巩固练习。 做第 7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。 (3)教学例6。 出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是的图纸上,长和宽各应画多少厘米? 指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。) 教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少? 然后让学生求x的值,并说出求解过程,教师板书出来。 “这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。 三、练习 1、 判断下面这段话中,哪些是比例尺,哪些不是比例尺?为什么? 2、 独立完成练习二第1题,并订正。 3、 完成练习二的第2题、3题。 第3题,让学生先想想比例尺子表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。 4成正比例的量 教学要求 : 1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。 2、培养学生用发展变化的观点来分析问题的能力。培养学生概括能力和分析判断能力。 教学重点:使学生理解正比例的意义 教学难点:引导学生通过观察、发现思考两种相关联的量的变化规律. 教学过程: 1、 复习: (1) 已知路程和时间,求速度? (2) 已知总价和数量,求单价? (3) 已知工作总量和工作时间,求工作效率? 2 新知: ( 1)教学例1 投影出示:一列火车1小时行驶90千米,2小时行驶180千米3小时行驶270千米,4小时行驶360千米 ,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米 6…… (1) 出示下表,填表 一列火车行驶的时间和路程 时间 路程 填表 思考:再填表中你发现了什么? 点拨:时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量.(板书:两种相关联的量) 根据计算,你发现了什么? 指出:相对应的两个数的比的比值一样或固定不变,在数学上叫做一定 用式子表示他们的关系是:路程/时间=速度(一定)(板书) (2) 教师小结: 同学们通过填表 交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定) 2 、教学例2 (1) 花布的米数和总价表 数量 1 2 3 4 5 6 7 …… 总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 …… (2)观察图表,发现什么规律? 用式子表示它们的关系:总价/米数=单价(一定) 1 、抽象概括正比例的意义. (1) 比较例1、例2,思考并讨论:这两个例题有什么共同点? (2) 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。 (3) 看书,进一步理解正比例的意义。 (4) 如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来? X/y=k(一定) (5) 根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件? 3 教学例3 (1) 出示例3:每袋面粉的重量一定,面粉的总重量和袋数,是不是成正比例? (2) 学生讨论解答 4 反馈练习: 第13页做一做,并订正. 五、课堂练习 1、 基本练习 第17页第1题订正时,必须让学生说明为什么? 2、综合练习 (1)判断 第17页2题 说明理由 (2)举例说明正比例关系 六 板书设计 成正比例的量 例1 例2 90/1=90 180/2=90 270/3=90 8.2/1=8.2 …… 16.4/2=8.2 路程/时间=速度(一定) 24.6/3=8.2…… 5、成反比例的量 教学内容:教科书第14-16页例4例6及做一做,练习三4到7题. 教学目的:理解反比例的意义;能根据反比例的意义,正确的判断两种量是否成反比例. 教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式. 教学难点:利用反比例的意义,正确判断两个量是否成反比例. 教学过程: 一. 铺垫孕伏 下面两种量是不是成正比例?为什么? 购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本. 2、成正比例的量有什么特征? 一. 探究新知 1、 导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。 2、 教学例4 (1)出示例4,提出观查思考要求: 从中你发现了什么?这与复习题相比有什么不同? (2)学生讨论交流 (3)引导学生回答: 1)表中的两个量是每小时加工的数量和所须时间。 2)每小时加工的数量扩大,所须的时间反而缩小;每小时加工的数量缩小,所须的时间反而扩大。 3)每两个相对应的数的乘积都是600 教师适时点拨: 想一想:每小时加工的数量和所须的时间是两种相关系的量吗?为什么? 议一议:两种量的变换有什么规律? (随着学生回答,教师板书:积一定) 教师提问:这个600实际上就是什么?(板书:零件总数一定) 教师指着板书提问:每小时加工数、加工时间和零件总是,怎样用式子表示它们的关系?(教师板书:每小时加工数×加工时间=零件总数) 3、教学例5 (1) 出示例5,根据题意学生口述填表。 (2) 观察上表你发现了什么?引导学生回答下列问题: 1)表中有哪两种量?(板书:每本张数 装订本数)是相关量吗? 2)装订的本数是怎样随着每本的张数变化的? 3)表中的两种量有什么变化规律? (3)订正是板书:在原板书“每小时加工数变化, 加工时间下”板书“装订本数”。 (4)教师提问:这个积600实际是什么?(板书:纸的总张数一定) 4、比较例4例5,概括反比例的意义。 (1) 请你比较例4例5,它们有什么相同点?(学生相互讨论) (2) 学生回答 教师引导学生明确:在例4中,所需的加工时间随着每小时加工数量的变化而变化,并且每小时加工的数量和加工的时间的积,也就是零件的总数是一定的。我们就说每小时加工的数量和所需的加工时间是成反比例的。 议议:在例5中,有那两种相关联的量?它们是不是相关的量?为什么? 1,教师:如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?(板书:x:y=k) 1、 教学例6 (1) 出示例6 (2) 学生交流 (3) 学生汇报,教师点拨 1)每天播种的公顷数和要用的天数是不是相关的量? 2)每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?(板书:每天播种的公顷数×天数=播种的公顷数(一定) ) 3)播种的公顷数一定,每天播种的公顷数和天数成反比例吗?为什么? 2、完成做一做 (三)全课小节 这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。 (四)随堂练习 1、想一想:成反比例的量应具备什么条件? 2、练习三第4题 13、判断下面每题中的两个量是不是成反比例,并说明理由。 (1)路程一定,速度和时间。 (2)小明从家到学校,每分走的速度和所需时间。 (3)平行四边形面积一定,底和高。 (4)小林做10道数学题,已做的题和没有做的题。 (5)小明拿一些钱买铅笔,单价和购买的数量。 (6)你能举一个反比例的例子吗? (五)布置作业 练习三第5~6题。 6 正比例和反比例的比较 教育目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。 2、使学生能正确判断正、反比例。 3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。 教学难点:正反比例的联系和区别 。 教学重点:能判断正、反比例。 教学过程: (1) 复习:判断 1、 单价一定,数量和总价。 2、 路程一定,速度和时间。 3、 正方形的边长和它的面积。 1、 时间一定,工效和工作总量。 (2) 新知: 1、 出示课题: 2、 教学例7 出示例7 表1 路程(千米) 5 10 25 50 100 时间(时) 1 2 5 10 20 表2 速度(千米/时) 100 50 20 10 5 时间(时) 1 2 5 10 20 分组讨论、交流。 说一说怎样想的,同时填空。引导学生讨论回答。 总结路程、速度、时间三个量中每两个量之间的比例关系。速度×时间=路程 路程/时间=速度 路程/速度=时间 3、 判断: (1) 速度一定,路程和时间成什么比例? (2) 路程一定,速度和时间成什么比例? (3) 时间一定,路程和速度成什么比例? 4 、比较正比例、反比例的关系 使学生明确 正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。 不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。 五、练习 1、 做一做 判断单价、数量和总价中的一种量一定,另外一种量成什么关系。为什么? 单价一定,数量和总价— 总价一定 ,数量和单价— 数量一定,总价和单价— 1、 判断每题中的两个量是是成比例。如果成比例,是成正比例还是成反比例关系,并说明理由。 2、 长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正比例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。 7 比例的应用 教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。 2、使学生能利用正反比例的意义正确解答应用题。 培养学生的判断分析推理能力。 教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题 教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。 教学过程: (一)复习: (二)新课 出示例1 (1)用以前方法解答。 (2)研究用比例的方法解答 题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系? 能不能利用这个关系式列比例解答? 解比例,同学自已完成,及时纠正。检验。 改变例1已知条件和问题3 教学例2比例应用2.ppt 1、以前的发法解答。 2、怎样用比例知识解答? 3 讨论结果填书上。 4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。 整理和复习 教学要求: 1、 使学生进一步理解比例的意义和基本性质,能区分比和比例。 2、 使学生能正确理解正、反比例的意义,能正确进行判断。 3、 培养学生的思维能力。 教学过程: 知识整理 1回顾本单元的学习内容,形成支识网络。 2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。 复习概念 什么叫比?比例?比和比例有什么区别? 什么叫解比例?怎样解比例,根据什么? 什么叫呈正比例的量和正比例关系?什么叫反比例的关系? 什么叫比例尺?关系式是什么? 基础练习 1填空 六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。 小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。 甲乙两数的比是5:3。乙数是60,甲数是( )。 2、解比例 5/x=10/3 40/24=5/x 3 、完成26页2、3题 综合练习 1、 A×1/6=B×1/5 A:B=( ):( ) 2、9;3=36:12如果第三项减去12,那么第一项应减去多少? 3用5、2、15、6四个数组成两个比例( ):( )、( ):( ) 实践与应用 1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。 2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少? 板书设计: 整理和复习 比例的意义 比例 比例的性质 解比例 正反比例 正方比例的意义 正反比例的判断方法 比例应用题 正比例应用题 反比例应用体题 第二单元教学目标 1、通过本单元的教学,向学生渗透“理论来源于实践”的观点,进一步发展学生的空间思维。 2、使学生认识圆柱和圆锥,掌握它们的特点;认识圆柱的底面、侧面和高;认识圆锥的底面和高。 3、使学生理解求圆柱的侧面积、表面积的计算方法,并会计算。 4、使学生理解求圆柱、圆锥的体积的计算公式,会用公式计算体积、容积,解决有关实际问题。 5、上有余力的学生初步认识球,知道球的各部分的名称及半径与直径的关系 1、圆柱的认识 教学内容:教科书第31—32页的内容,完成“做一做”和练习七的第 1题。 教学目的:使学生认识圆柱的特征,能看懂圆柱的平面图;认识圆柱侧面的展开图。 教具准备:教师准备长方体形和正方体形的物体各一个,及多个圆柱形的物体(如罐头盒、茶叶筒、药盒、药瓶、纸盒等);让学生也收集几个圆柱形的盒子,同时让学生将教科书上的图沿边剪下来。 教学过程: 一、复习 1、已知圆的半径或直径,怎样计算圆的周长? 指名学生回答,使学生熟悉圆的周长公式:C=2 Π r或C= Π D。 2、求下面各圆的周长(口算)。 教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确。 二、导入新课 教师手中先后拿一个长方体形的物体和正方体形的物体,提问:我手里拿的物体是什么形状的?他们有什么特征? 由此引导学生复习长方体和正方体的一些特征。 教师出示几个圆柱形的物体,“大家注意了,你们看看这些物体跟长方体、正方体的形状一样吗?” 学生:不一样。 教师:请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它们与长方体有什么不一样? 三、新课 1、圆柱的认识。 让学生拿着圆柱形的物体观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到长方体、正方体都是由平面围成的立体图形;而圆柱则有一个曲面, 有两个面是圆,从上到下一样粗细,等等。 教师指出:像这样的物体就叫做圆校体,简称圆柱。这节课我们就来学习这种新的立体图形。 板书课题:圆柱 教师:大家刚才认识了圆柱形的物体,我们把这些物体画在投影片上。出示有圆柱形物体的投影片。 教师:现在我们沿着这些圆柱形物体的轮廓画线,于是就可以得到这样的图形。随后教师抽拉投影片,演示得到圆柱形物体的轮廓线。 然后指出:这样得到的图形就是圆柱体的几何图形。 教师:请大家再观察一下,这些圆柱的上、下两个面有什么特点? 引导学生发现:圆柱的上、下两个面都是平面,并且它们是完全相同的两个圆。 教师指出:圆柱的上、下两个面叫做底面。 然后在图上标出底面以及两个圆的圆心O。 同时还要指出:我们所学的圆柱是直圆柱的简称,即两个底面之间从上到下一样粗细,高垂直于底面。 接着让学生用手摸一摸圆柱周围的面,使学生发现圆柱有一个曲面,由此指出:圆柱的这个曲面叫做侧面。(在图上标出侧面。) 让学生看圆柱形物体,指出:圆柱的两个底面之间的距离叫做高。然后在图上标出高。 提问:圆柱的高有多少条?他们之间有什么关系? 使学生明白:圆柱的高有无数条,他们都相等。 然后让学生拿出自己的学具,同桌的两名同学相互指出圆柱的两个底面、侧面和高。 小结:圆柱的特征(可以启发学生总结),强调底面和高的特点。 上、下两个面都是面积相等的圆 圆柱 从上到下粗细相同 2、巩固练习 (1)做“做一做”的第2、3题。 要求学生说出日常生活中哪些物体是圆柱形的,如钢管、汽油桶、炉子姻简、截面是圆形的铅笔等。 (2)出示一组立体图形,辨析哪些是圆柱,哪些不是圆柱?为什么? 2、圆柱的表面积 教学内容:教科书第33—34页的例l一例3,完成“做一做”和练习七的第2—5题。 教学目的:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。 教具准备:圆柱形的物体,圆柱侧面的展开图 教学过程; 一、复习 1、指名学生说出圆柱的特征。 2、口头回答下面问题: 学生回答后板书:长方形的面积=长×宽 二、导入新课 教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形? 教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。 教师:这个展开后的长方形与圆柱有什么关系? 学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。 教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。 三、新课 1,圆柱的侧面积。 板书课题:圆柱的侧面积。 教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。 教师边叙述边摸着圆柱的侧面演示给学生看,指出侧.面的大小就是圆柱的侧面积。 教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢? 教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。 教师:那么,圆柱的侧面积应该怎样计算呢? 引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道: 圆柱的侧面积=底面周长×高 (板书上面等式:) 2、教学例1: 出示例1 让学生回答下面的问题: (1)这道题已知什么,求什么? (2)计算结果要注意什么? 指定一名学生板演,其他学生在练习本上做。教师行间巡视,注意发现学生计算中的错误,并及时纠正。 做完后,集体订正。 3、小结。 要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径.底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式: 4、理解圆柱表面积的含义。 教师:请大家把上节课自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成? 通过操作,使学生认识到:圆柱的表面由上、下两个底面和侧面组成。 教师指着圆柱的展开图,“那么,圆柱的表面积是什么?” 指名学生回答,使大家明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。 板书:圆柱的表面积=圆柱侧面积十两个底面的面积 教学例2。 出示例2的题目。 教颊:这道题已知什么?求什么? 学生:已知圆柱的高和底面半径,求表面积。 教师:要求圆柱的表面积,应该先求什么?·后求什么? 使学生明白:要先求圆柱侧面积和底面积,后求表面积。 教师:我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数据标在图上。 教师:现在我们把这个圆柱展开。出示展开图。 让学生观察展开图,“在这个图中,长方形的长等于多少?宽等于多少:圆柱的侧面积怎样计算?圆柱的底面积应该怎样求?” 指名学生回答,注意要使学生弄清每一步计算运用什么公式(如圆的周长公式和面积公式,长方形的面积公式,等等)。 然后指定一名学生在黑板上板演,其他学生在练习本上做。教师行间巡视,注意察看学生计算结果的计量单位是否正确。 做完后,集体订正。 6、教学例3。 出示例3。教师:这道题已知什么?求什么? 学生:己知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用多少铁皮。 教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分? 使学生明白:水桶没有盖,说明它只有一个底面。 教师:要计算做这个水桶需要多少铁皮,应该分哪几步? 指名学生回答后,指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。 做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。 7、小结。 在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。 四、巩固练习 1、做“做一做”的第1题。 教师:这道题已知什么?应该怎样求侧面积? 使学生明白可以直接用底面周长乘以高就可以得到侧面积。 让学生做在练习本上,做完后集体订正。 2、做一做的第2题。 让学生独立做在练习本上,教师行间巡视,做完后集体订正。 五、作业 1、完成第练习七的第2~~5题。 (1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。 (2)第4题,圆柱形沼气池·的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。 (3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。 2、让学有余力的学生做练习十的第6、7题。 第6·题.是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆柱的 侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。 第7题,是求一个没有盖的圆柱形铁皮水桶的用料:S=ΠR十2ΠH≈63.59 十 339.12=402.71≈410(平方分米) 3、圆柱的体积 教学内容:教科书第36页的圆柱体积公式的推导和例4,完成“做一做”的第1题和练习八的第1—2题。 教学目的:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。 教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。 教学过程: 一、复习 1、圆柱的侧面积怎么求? (圆柱的侧面积=底面周长×高。) 2、长方体的体积怎样计算? 学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。 板书:长方体的体积=底面积×高 3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高? 二、导入新课 教师:请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的? 先让学生回忆,同桌的相互说说。 然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的 计算公式导出求圆面积的计算公式。 教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积? 让学生相互讨论,思考应怎样进行转化。 指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开,教师应该给予表扬。 教师:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。 板书课题:圆校的体积 三、新课 1、圆柱体积计算公式的推导。 教师出示一个圆柱,提问:这是不是一个圆柱?(是。) 教师用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问: “大家看,这是不是一圆?”(是。) “这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?” 学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。 然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。 教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形? 指名学生回答后,老师进行操作演示,先只把底面部分拿给学生看,。大家看,圆柱的底面被拼成了什么图形?” 学生:长方形。 教师:大家再看看整个圆柱,它又被拼成了什么形状? (有点接近长方体:) 然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。 教师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求? 引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。 教师:“而长方体的体积等于什么?”让全斑学生齐答,教师接着板书:“长方体的体积=底面积×高”。 教师:请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系? 通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。 板书:圆柱的体积=底面积×高 教师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式; V=SH 2、教学例4。 出示例4。 (1)教师指名学生分别回答下面的问题: ①这道题已知什么?求什么? ②能不能根据公式直接计算? ③计算之前要注意什么? 通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。 (2)出示下面几种解答方案,让学生判断哪个是正确的? ①V=SH=50×2.1=105 答:它的体积是105立方厘米。 ②2.1米;210厘米 V=SH=50×210=10500 答:它的体积是10500立方厘米。 ③50平方厘米=0,5平方米 V=SH=0.5×2,1=1.05 答:它的体积是1.05立方米。 ④50平方厘米=0.005平方米 V=SH=0.005×2.1=0.0105立方米 答:它的体积是0.0105立方米。 先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、②种解答要说说错在什么地方。 三、练习: 1、做“做一做”的第1题。 让学生独立做在练习本上,做完后集体订正。 2、完成练习八的1、2题 这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题 后,知道底面直径的要先求出底面积,再求圆柱的体积。 3、扩展题 4、圆柱体积计算的应用 教学内容 :教科书第37页的例5,完成“做一做”的第2题和练习八的第3—7题。 教学目的:使学生掌握圆柱体积的计算公式,并能运用公式解决一些简单的实际问题。 教具准备:一个圆柱形物体,一个圆柱形杯子。 教学过程: 一、复习 1、口算。 出示练习八的第3题 4.5 十 0.37 0.25×8 4.8十 2.9 7.2÷9 6.1—4.8 - 2,复习圆柱的体积。 教师:我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么? 指名学生叙述一下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。圆柱体积的计算公式是“底面积×高”,即:V=SH. 二、新课 1、教学圆柱体积公式的另一种形式。 教师:请大家想一想,如果已知圆柱底面的半径r和高H,圆柱体积的计算公式 应该怎样表达? 引导学生根据底面积S与半径r的关系可以知道:S=∏×R × R,所以圆柱体积的计算公式也可以写成:V=∏×R×R×H。 2、教学例5。 出示例5。 (1)教师提出下面问题帮助学生理解题意: ①这道题已知什么?求什么? ②求水桶的容积是什么意思?根据什么公式?为什么? 要使学生理解水桶的容积就是水桶能容纳物体的体积,求水桶的容积就是求这个圆柱形水桶内部的体积。所以可以根据圆柱体积的计算公式来计算。 ⑧要求水桶的容积应该先求什么? 要使学生明确,水桶的底面积在题中没有直接给出,因此要先求水桶的底面积,再求水桶的容积。 ①水桶的底面积应该怎样求? (2)让学生叙述解答过程,教师板书。 求出水捅容积之后,教师提问:最后结果应该怎样取值? 使学生明确要把计量单位改写成立方分米,取近似值时要采用去尾法。 (3)做一做的第2题。 让学生独立做在练习本上,做完后集体订正。 三、课堂练习 1、做练习八第4题。 这是一道实际测量、计算的题目,可以分组进行测量和计算,每组的茶杯可以是不一样的。教师可以先让学生讲一下自己的测量方法,再进行测量和计算。 学生测量时,教师行间巡视,注意察看学生测量的方法是否正确,对有困难的学,生要及时给予指导。 做完后集体订正,要注意强调不能只计算出茶杯的体积,还要计算出可以装多少克水,以及取近似数的方法。 2、做练习八的第5题。 读题后.教师可以先后提问: “这道题要求的是什么?” “题目只告诉了圆柱形粮食囤的底面半径和高,要求这个粮囤能装稻谷多少立方米,应该先求什么?怎样求?” 指名学生回答后,再让学生独立做在练习本上,教师巡视。 做完后集体订正,强调得数的取舍方法。 3、做练习八第6题。 教师:这道题已知什么?求什么? 指名学生回答后,再问:应该怎样求? 引导学生从圆柱的体积计算公式入手,可以直接用算术方法计算,也可以列方程来解答。 4、做练习八的第7题。 读题后,教师可提出以下问题: “这道题要求的是什么?” “怎样利用已知条件求出这个油桶的容积?” “题目中的条件和问题的单位不统一。应该怎样改写更简便?”分别指名学生回答。要使学生明白,这里可以先将40厘米和50厘米分别改写成4分米和5分米计算更简便。 让学生独立做在练习本上,教师行间巡视,注意察看学生对圆柱体积计算方法是否掌握,计量单位是否按照题目的要求进行改写,最后得数的取舍是否正确。 做完后集体订正,指名学生说说自己是怎样计算的。 5、圆锥的认识 教学内容:教科书第41—42页的内容,完成“做一做”和练习九的第l一2题。 教学目的:使学生认识圆锥,掌握圆锥的特征,会看圆锥的平面图。 教具准备:要求每个学生用教科书图样做一个圆锥的模型,并让学生收集一些圆锥形的实物,教师准备一个圆锥形物体,一块平板(或玻璃),一把直尺。 教学过程: 一、复习 1、提问:圆柱体积的计算公式是什么? 2、圆柱的特征是什么? 二、导入新课 教师:我们已经学习了圆柱的有关知识。请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它与圆柱有什么不一样? 三、新课 1、圆锥的认识。 让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆,等等。 教师指出:像这样的物体就叫做圆锥体,简称圆锥。这节课我们就来学习这种新的立体图形: 板书谋题:圆锥 教师:大家门才认识了圆锥形的物体,我们把这些物体画在投影片上。 出示有圆锥形物体的投影片。 教师:现在我们沿着这些圆锥形物体的轮廓画线,就可以得到这样的图形。 随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。 然后指出:这样得到的图形就是圆锥体的几何图形。 教师指出:圆锥有一个顶点,它的底面是一个圆。 然后在图上标出顶点,底面及其圆心O。 同时还要指出:我们所学的圆锥是直圆锥的简称。 接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。) 让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。 教师顺着母线的方向演示。问:这条线是圆锥的高吗? 指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。 教师:圆锥的高到底有多少条呢? 引导学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。 然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。 2、小结。 圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。 3、测量圆锥的高。 教师:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助—块平板来测量。 教师边演示边叙述测量过程: (1)先把圆锥的底面放平; (2)用一块平板水平地放在圆锥的顶点上面; (3)竖直地量出乎板和底面之间的距离。 测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置;(2)读数时一定要读平板下沿与直尺交会处的数值。 4、教学圆锥侧面的展开图。 教师:圆锥的侧面是哪一部分? 教师展示圆锥模型,指名学生说出侧面部分。 教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形? 学生回答出圆柱的侧面展开图是长方形后,教师设问:那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?” 留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥的侧 面展开后是一个什么图形。 然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。 四、课堂练习 1做“做一做”的题目。 让学生拿出课前准备好的模型纸样.先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。 2、做练习九的第1题。 让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。 3、做练习九的第2题。 这道题是培养学生拆分组合图形的能力,使学生能将一个组合图形拆成已经学过的。 读题后,教师提问: 6、圆锥的体积 教学内容:教科书第42~~43页的例1、例2,完成“做一做”和练习九的第3—5题。 教学目的:使学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展学生的空间观念。 教具准备:等底等高的圆柱和圆锥各一个,比圆柱体积多的沙土(最好让学生也准备). 教学过程: 一、复习 1、圆锥有什么特征? 使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。 2、圆柱体积的计算公式是什么? 指名学生回答,并板书公式:“圆柱的体积=底面积×高”。 二、导人新课 我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。 板书课题:圆锥的体积 三、新课 1、教学圆锥体积的计算公式。 教师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的? 指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。 教师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢? 先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。 教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?” 然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?” 接着,教师边演示边叙述:现在圆锥和圆柱里都是空的。我先在圆锥里装满沙土,然后倒入圆柱。请大家注意观察,看看能够倒几次正好把圆柱装满? 问:把圆柱装满一共倒了几次? 学生:3次。 教师:这说明了什么? 学生:这说明圆锥的体积是和它等底等高的圆柱的体积的 。 板书:圆锥的体积=1/3 × 圆柱体积 教师:圆柱的体积等于什么? 学生:等于“底面积×高”。 教师:那么,圆锥的体积可以怎样表示呢? 引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。 板书:圆锥的体积= 1/3 ×底面积×高 教师:用字母应该怎样表示? 然后板书字母公式:V=1/3 SH 2、教学例1。 出示例1。 教师:这道题已知什么?求什么? 指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算? 引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。 3、做第50页“做一做”的第1题。 让学生独立做在练习本上,教师行间巡视。 做完后集体订正。 4、教学例2。 (1)出示例2。 教师:这道题已知什么?求什么? 学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重量;求这堆小麦的重量。 教师:要求小麦的重量,必须先求出什么? 学生:必须先求出这堆小麦的体积。 教师:要求这堆小麦的体积又该怎么办? 学生:由于这堆小麦近似于圆锥形,所以可利用圆锥的体积公式来求。 教师:但是题目的条件中不知道圆锥的底面积,应该怎么办。? 学生:先算出麦堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出麦堆的体积。 教师:求得小麦的体积后.应该怎样求小麦的重量? 学生:用每立方米小麦的重量乘以小麦的体积就可以求得小麦的重量。 分析完后,指定两名学生板演.其余学生将计算步骤写在教科书第50页上。做完后集体订正,注意学生最后得数的取舍方法是否正确。教师要说明小麦每立方米的重量随着含水量的不同而不同,要经过量才能确定,735千克并不是一个固定的常数 (2)组织学生讨论,怎样测量小麦堆的底面直径和高? 讨论后.先让学生说出自己的想法.然后教师再介绍一下测量的方法:测量底面直径时。可以用两根竹竿平行地放在小麦堆两侧,测量出两根竹竿间的距离就是底面直径:也可以用绳子在底部圆的周围围上一圈量得小麦堆的周长,再算出直径。测量小麦堆的高。可用两根竹竿.将一根竹竿过小麦堆的顶部水平放置,另一根竹竿竖直与水平的竹竿成直角即可量得高。 5、做“做一做”的第2题。 教师:这道题应该先求什么? 学生:要先求圆锥的底面积。让学生做在练习本上,教师行间巡视。 做完后集体订正。 四、小结(略) 五、课堂练习 1、做练习九的第3题。 指定3名学生在黑板上板演,其余学生做在练习本上。 集体订正时.让学生说一说自己的计算方法。 2,做练习九的第4题。 教师可以让学生回答以下问题: (1)这道题已知什么?求什么? (2)求圆锥的体积必须知道什么? (3)求出这堆煤的体积后,应该怎样计算这堆煤的重量? 然后让学生做在练习本上,教师巡视,做完后集体订正。 3、做练习九的第5题。 教师指名学生先后回答下面问题: (1)圆柱的侧面积等于多少? (2)圆柱的表面积的含义是什么?怎样计算? (3)圆柱体积的计算公式是什么? (4)圆锥的体积公式是什么? 然后,让学生把计算结果填写在教科书第51页的表格中。做完后集体订正。 7、圆锥体积的练习 教学内容:教科书练习九的第6—9题。 教学目的:通过练习,使学生进一步熟悉圆锥的体积计算。 教学过程: 一、复习 1、圆锥的体积公式是什么? 2、填空。 二、课堂练习 1、做练习九的第6题。 教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积: 让学生分组讨论一下,然后各自让一名学生说说讨论的结果,最后归纳出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板 测量出圆锥的高,这样就可以求出圆锥的体积。 2、做练习九的第7题。 读题后,教师可以先后提问: “这道题已知什么?求什么? “要求这堆沙的重量,应该先求什么?怎样求?” 指名学生回答后,让学生做在练习本上,做完后集体订正。 3、做练习九的第8题。 读题后,教师可提出以下问题: “这道题要求的是什么?” “要求这段钢材重多少千克,应该先求什么?怎样求?” “能直接利用题目中的数值进行计算吗?为什么?” “题目中的单位不统一,应该怎样统一?” 分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。 4、做练习九的第9题。 读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么? 要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。 让学生独立做在练习本上,做完后集体订正。 三、选做题 让学有余力的学生做练习九的第10*、11*、12*题。 1.练习九的第10*题。 教师:这道题要求圆锥的体积.但是题目中没有告诉底面积,而只是已知底 面周长和高。请大家想一想,应该怎样求出底面积? 引导学生利用“C=2∏r”再利用“S∏R,就可以求得S=∏( )’。再利用圆锥的体积公式就可以求出其体积。 2、练习九的第11*题。 这是一道有关圆柱、圆锥体积的比例应用题。 可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。 设圆柱的高为x厘米 (注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。) 3.练习九的第12题。 这道题是拆分组合图形,引导学生仔细分析图形,不难看出它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。 整理和复习 教学要求:通过整理和复习,掌握圆柱和圆锥的特点,求圆柱圆锥体积的计算公式。能区别圆柱、圆锥,正确计算圆柱圆锥的体积,建立空间观念。 教学重点:使学生了解圆柱圆锥的特点,求圆柱圆锥的体积。 教学难点:形成表象,建立空间观念。 教学过程: (一)整理 (1)圆柱 圆柱的特点 圆柱的各部分名称 圆柱表面积 圆柱的体积 V=Sh (2)圆锥 圆锥的特点 圆锥的各部分名称 圆锥的体积 V=-1/3Sh (二)随堂练习 1、第48页1-3圆柱内容 填书。 练习十第1、2题,第3体求圆柱的体积。 2、第48页4-6题圆锥的内容,填书。 练习十第3题求圆锥的体积。 板书设计: 整理和复习 特征 圆柱 各部分名称 表面积=两个底面积=侧面积 体积=V=Sh 特征 圆锥 各部分名称 体积V=1/3Sh 简单的统计(二) (一) 教学要求 1. 使学生进一步认识统计的意义和作用。 2. 使学生学会制人选一些含有百分数的简单的统计表。 3. 使学生初步认识条形统计图、折线统计图和扇形统计图的特点和作用,并学会制作一引起简单的统计图。 4. 使学生会对统计图表进行一些简单的分析,受到国情教育。 (二) 教学指导 本单元的主要内容包括:含有百分数的统计表,条形统计图的折线统计图的特点、作用及制作的一般步骤。 1. 教学统计表时,启发学生在原来的统计表中增加一栏内容(百分数)就可以看出统计表中有关数量间的百分比关系。 2. 教学统计图时,应比较详细地介绍制作的一般步骤,边讲解边制作。教学例2时,应突出复式条形统计图与单式条形统计图的不同之处。 3. 注意指导学生对统计图表进行一些简单的分析,提高学生观察分析能力。 (三) 教案 1. 统计表 第一课时 课题:含有百分数的统计表 教学内容:教材70~71页的内容。 教学目标: 1. 使学生能够掌握含有百分数复式统计表的制作方法;会计算合计中的百分数;进定步学会制复式统计表。 2. 加深对百分数在统计中的作用的理解,能运用百分数说明一些简单的问题。 3. 通过绘制和分析含有百分数的统计表,渗透国情教育。 教学过程: 1. 以旧引新 说说制作复式统计表的步骤? 2. 新授 (1) 导入新授 我们已经掌握了复式统计表的制作方法,今天我们学习含有百分数的复式统计表。 (2) 出示例1:下面是1990年至1992年东山村每年的总收入与村办企业收入的统计表。如果要使这个统计表表示出这三个年度中村办企业心入占全村总收放的百分之几,应该怎样做? 东山村村办企业收入统计表 2001年3月制 项 目 金 额 ( 元 ) 年 度 全村总收入 其中村办企业收藏 合计 1998年 750万 420万 1999年 875万 542.5万 2000年 1800万 1449万 引导学生观察并思考,然后回答: 1) 每年全村总收入和其中村办企业收各是多少? 2) 要使这个统计表表示出这个年度中村办企业中村办企业占全村总收入的百分之几,应该怎样做?(先讨论,再回答) (3) 教师说明:只要在这个统计表中再增加一栏,依次填上每年村办企业收入占体村总收入的百分数就可以了。教师边讲边在原统计表在右边增加一栏,就成为例1的第二个统计表了。(见教材页) (4) 要求学生自己完成第二个统计表,并提问: 1) 1992年全村收入比1991年增加多少万元? 1) 1992年村办企业收入比1991年增加多少万元? 2) 1992年该村其他收入(包括粮食、副业等)比1991年增加多少万元? 3) 1992年村办企业收入占全村总收入的百分之几? (1) 强调 1) 计算百分数时,百分号前的数只需取一位小数。 2) 合计这一行的百分数要用三年村办企业收入的合计数占三年总收入的百分比。 (2) 新授小结 在填写含有百分数的统计表时,先看清表中的要求,想好怎样计算问题的百分数,然后再填。 1. 巩固练习 完成教材52页“做一做” 2. 全课总结 提问学生总结:通过这节课的学习,你学到了什么内容?你都学会了哪些知识? 3. 作 练习十一1—2题。 第二课时 统计表的练习 教学要求: 1. 使学生进一步掌握含有百分数统计表的结构及能够准确熟练地进行数据计算与表格填写。 2. 进一步培养学生观察、分析的能力。 3. 通过制统计表,培养学生认真、仔细的良好习惯。 教学过程: 1. 讲述练习内容 上节课我们学习了制作含有百分数的统计表,这节课我们进行巩固练习。 2. 复习 让学生观察教材 52页例1统计表提问:制一张合格的统计表的步骤是什么?(要求边看书边讨论,然后回答) 制复式统计表的步骤: (1) 设计“表头” (2) 定纵横栏目各需几格 (3) 画表 (4) 填写数据(包括总计、合计) (5) 写上名称、制表日期 1. 巩固练习 在学生掌握复式统计表制作方法的基础上,出示练习十七第3题。 方法:指导做题,让学生研究后再制表 (1) 提问:“各年级”和“全年级”各表示什么意思? (2) 教师巡视指导,然后让学生结合题目说一说制表的步骤。 2. 综合练习 (1) 完成教材练习十一第5题。 方法:独立完成。然后让学生回答第二季度合计数填写的位置,全班齐练。 (2) 完成教材练习十一第4题。 方法:要求学生认真审题,抓住关键词语,弄清数量关系,正确列出算式,准确计算。在做题时一定要注意差后,发现普通的问题要统一纠正。 3. 深化练习 练习十一第6题,不要求所有的学生都能完成,教师提示引导,学生试做。 教师引导,表中各班占总数的百分几中的总数指的是谁平均每人植树的棵数又是什么意思?学生试做后讲评。 4. 全课总结 有关统计部分的知识在我们的生活中应用很广,因此这部分知识很重要, 同学们一定要牢牢记住。 5. 作业(补充) (1) 请把下面统计表填写完整 双林衬衫厂去年各季度生产情况统计表 1993年1月 项目 件数 季度 计划产量 实际产量 完成计划的百分数 合计 第一季度 8000 125% 第二季度 12000 120% 第三季度 1000 12500 第四季度 18200 140% (1) 填表。根据统计要求将下表填写完整 东方小学男、女生人数统计表 性别 人数 年级 合计 男生 女生 各年级女生占男姓人数的百分数 总计 280 低年级 90 47 中年级 80 36 高年级 52 1. 统计图 第一课时 条形统计图 教学目标: 1. 使学生了解条形统计图的意义和作用,掌握制作条形统计图方法,能看懂和制作单式条形统计图。 2. 培养学生初步统计能力,向学生渗透辩证唯物主义观点。 教学过程: 1. 复习 (1) 上节课我们学习了什么内容? 我们已经学会制作简单的统计表,用统计表表示的数量,还可以用统计图来表示。 (板书:统计图) (1) 导入新授 (出示从报刊或图书搜集的一些学生易于理解的条形统计图,折线统计图和扇形统计图)告诉学生:常用的统计图有条形统计图、折线统计图和扇形统计表三种。这节课我们先来学习第一种—条形统计图。 (完成板书:条形统计图) 1. 新授 (1) 教学条形图统计图的意义及组成。 (2) 思考: (3) 教学条形统计图的制作方法 1) 出示例1 例1 某地1996~2000年的年降水量如下表 年份 1996年 1997年 1998年 1999年 2000年 降水量(毫米) 920 860 1005 670 704 根据表中数据,制成条形统计图。 2) 单式条形统计图的制作方法。 自学:制条形统计图的一般步骤是什么? 教师示范后,让学生完成这张统计图,教师巡视指导。 1) 归纳制作形统计图的一般步骤 2) 哪一年的年降水量最多?是多少毫米? 3) 哪一年的年降水量最少?是多少毫米? 4) 最多年降水量大约是最水年降水量的几倍? 归纳条形统计图的特点。 比较统计表和统计图,想一想:条形统计图有什么特点?(特点:从条形统计图中很容易看出各种数量的多少) (4) 课堂练习 完成教材75页的“做一做” 注意:画出的直条要准确;直条顶上注明具体数量。 (1) 小结:条形统计图的制作方法是什么?在制作时要注意什么问题? (2) 看书并质疑 1. 巩固练习 完成教材练习十二第1、2题。 2. 全课总结 这节课我们学习了哪些内容?学会了哪些知识? 第二课时 条形统计图 教学目标: 1. 使学生进一步掌握制作条形统计图的方法,并会制作复式条形统计图。 2. 培养学生初步的统计能力,向学生渗透辩证唯物主义的事物间是普遍联系的观点。 教学过程: 1. 以旧引新 回答。 (1) 统计图分为哪几种?什么是条形统计图 (2) 制作条形统计图的步骤分为哪几步? 2. 新授 (1) 揭示课题:这节课继续学习“条形统计图”(板书课题) (2) 学习例2 1) 出示例2 例2 下面是前进机床厂各车间男、女工人数统计表。 车间 合计 第一车间 第二车间 第三车间 人数 性别 总计 570 110 245 215 男工 325 80 110 135 女工 245 30 135 80 根据上表中的数据、制成条形统计图。 1) 看书第57页,思考并讨论。 a. 例2是一个什么样的统计表? b. 画这幅条形统计图时,需哪些地方与例1相同?哪些地方与例1不同? c. 在把例2制成条形统计图时,需把三个车间的男工和女工的人数都分别表示出来,需要怎么办? 2) 回答思考题。 例2是一个复式统计表, 与例1相比二者相同点是: 二者不同点是: 3) 依照课本第58页例2中,第一、第二车间的制图方法,完成第三车间的制图。 4) 在制作复式条形统计图时,应注意什么? 5) 观察例2的统计图回答下面的问题: a. 男工人数最多的是哪个车间?最少的是哪个车间? b. 女工人数最多的是哪个车间?最少是是哪个车间? c. 在统计图怎样找出哪个车间的人数最多?哪个车间人数最少? (1) 小结:复式条形统计图的制作方法和注意的问题。 (2) 看书并质疑 1. 巩固练习 教材练习12 第5、6题。 2. 全课总结 这节课我们学习了哪些知识? 第三课时 折线统计图 教学目标: 1. 使学生了解折线统计图的意义和作用,掌握制作折线统计图的方法,能看懂和制作单式折线统计图。 2. 培养学生初步的统计能力,向学生渗透辩证唯物主义观点。 教学过程: 1. 复习旧知,导入新授 上节课我们学习了什么内容? 我们已经学会了制作条形统计图,常用的统计图还有折线统计图。(出示从报刊或图书中搜集的一些学生易于理解的折线统计图)这节课,我们就来学习折线统计图。 (板书:折线统计图) 2. 新授 (1) 教学折线统计图的意义及组成 看教材62页 完成思考题。 1) 幻灯出示折线统计图的意义。 2) 第62页例3的折线统计图,指图说出它包含哪引起内容。 (2) 教学折线统计图的制作方法。 出示例3 例1 某地1993年每月的月平均气温如下表 月份 一 二 三 四 五 六 七 八 九 十 十一 十二 平均气温℃ 2 5 10 16.5 22 28 32 32.5 26 19 11.5 5 根据上表中的数据,制成折线统计图。 教学单式折线统计图的制作方法。 1) 引导学生思考: a. 一年有十二个月,在水平射线上应如何划分? b. 这一年最高的月平均气温是32.5℃,在垂直射线上应如何划分? 2) 说明:在画折线时,先要按照数据大小描出各点,再用线段顺次连接起来。 3) 指导学生到讲台前来画一画,描出各点,再顺次连接两点之间成直线,在各点注上数字 最后写好统计图标题、标明制图日期。 1) 教师示范后,让学生完成这张统计图,教师巡视指导。 2) 比较折线统计图的步骤与制条形统计图有什么异同点? (制折线统计图的步骤与制条形统计图基本相同,只是不画直条,而是按照数据大小描出各点,再用线段顺序连接起来) (1) 教学折线统计图的特点 看例3的折线统计图回答问题: 1) 哪个月的平均气温最高?哪个月的平均气温最低? 2) 哪两个月之间的平均气温上升得取快?哪两个月之间的平均气温下降得最快? 归纳折线统计图的的特点。 (2) 比较条形统计图的折线统计图,想一想:折线统计图有什么特点? (3) 课堂练习 完成教材63页“做一做”。 (4) 小结:折线统计图抽制作方法是什么?要注意什么问题? (5) 看书并质疑 1. 巩固练习 完成教材练习十九第1、2题。 2. 全课总结 这节课我们学习了哪些知识? 第四课时 折线统计图 教学目标: 1. 使学生了解复式折线统计图的特点和用途,掌握绘制复式折线统计图的方法,会绘制复式折线统计图。 2. 培养学生初步统计能力,向学生渗透辩证唯物主义观点。 教学过程: 1. 复习 回答 (1) 什么是折线统计图 (2) 制作折线统计图分为哪几步? 2. 新授 (1) 揭示课题 这节课我们将继续学习“折线统计图”。(板书课题) (2) 学习例4 出示例4 例4 某市无线电一厂、二厂1985年~1983年的产值增长情况如下表。 年份 产值(万元) 厂名 1985年 1988年 1990年 1992年 1993年 无线电一厂 4000 6000 9500 12000 18000 无线电二厂 4000 4500 5500 6500 9100 根据上表中的数据,制成折线统计图。 看书第64页,思考并讨论: 1) 回答思考题: 1) 例4是一个复式统计表 2) 例4表中表示的统计数据的年份是不连续的。 在制统计图时,需要根据实际年份的多少在水平射线上划分出表示年份的间隔,使得表示两年的间隔是表示一年间隔的2倍,表示三年的间隔是表示一年间隔的3倍。这样能真实地比较出产值增长变化的情况。 1) 可以把它们绘制在一张图上 先用折线统计图描点的方法,描出各点后,再肜两种不同的颜色或不同的线段把它们区别出来,并在制表日期下注明图例,说明每种线段表示的是什么即可。 仿照教材65页例4中无线电一厂的制图方法,完成无线电二厂的制图。 在制作复式折线统计图时,应注意什么? (在描出各点后,要用两种不同的颜色或不同的线段把它们区别开来;应在制表日期下注明图例) 观察例4的统计图,回答下面的问题 1) 哪个厂的工业产值增长得快? 2) 哪一年的工业产值增长得最快? 3) 比较例4与例3有什么不同? (1) 小结:讲述复式折线统计图的制作方法和应注意的问题。 (2) 看书并质疑 1. 巩固练习1 (1) 完成教材65页的“做一做” (2) 完成教材练习十三第5题。 2. 全课总结 这节课我们学习了哪些知识? 第五课时 扇形统计图 教学目标: 1. 使学生了解扇形统计图的特点,掌握制扇区形统计图的一般步骤,并能正确制作扇形统计图。 2. 培养学生的观察、分析、概括能力。 3. 渗透“实践第一”观点。 教学过程: 1. 以旧引新 (1) 回答。 圆周角的度数是什么?条形统计图的特点有哪些?折线统计图的特点有哪些? (2) 板画 两一个半径为30厘米的图形。 2. 新授 (1) 导言:前几节课我们一同学习了长形统计图的折线统计图,掌握了这两种统计图的特点和画法,这节课我们来学习一种新的统计图。(板书:扇区形统计图 (2) 出示准备题,思考 1) 扇形统计图是用什么图形来表示的?结合准备题想一想这个整圆表示的是什么?(全班学生的人数) 2) 通过这个扇形统计田径反映了这个班的学生在活动课中参加了几种小组活动?它们分别占全班人数的百分之几?用什么图形来表示? 1) 观察图中这个班级的学生参加小组人数最多的是哪个组?最少的是哪个组? 2) 你能够说出扇区形统计图有什么特点吗?(师生共同总结出扇区形统计图的特点,并出示事先写好的小黑板,并找一名学生读) 3) 请你用量角器量一量书上图中每个扇形对应的圆心角各是多少度?量完以后算一算每个圆心角的度数占整个圆周角的百分之几?你又看到了什么?(这个百分数与统计图中的百分数相同) 阶段小结:要想知道每扇形的面积有多大,占整个圆面积的百分之几,只要知道这个扇形的圆心角的度数占整个圆周角的百分之几就可以了,因此在制作扇形统计图时首先要知道部分数量占总数量的百分之几,然后再根据这些百分数算出每个扇形的圆心角度数,就可以画出各个扇形了。 (1) 讲解例5 出示例5并思考 1) 找学生读题,想一想制作扇形统计图,第一步先算什么?怎样列式?(边讲解边板书:84+24+12=120(公顷),粮食作物:84/120=0.7=70%;棉花:24/120=0.2=20%;油料作物:12/120=0.1=10%.每步追问,并核对三个百分数相加是否是100%) 2) 第二步再算什么?(板书并核对三个度数相加是否是360°) 3) 第三步怎样做?(板画图中根据圆心角度数顺次画出三个不同的扇形) 4) 最后一步怎样做?(标明相应的名称和百分数,把各个扇形用不同的线纹或颜色区别开来,并提醒学生写上统计图的名称和制作日期) 5) 师生共同总结一下制作扇形统计图的步骤 6) 阶段练习:完成教材70页中的“做一做”。(都是巡视,个别指导,找学生板画) 小结:这节课我们学习了什么知识?扇形统计图有什么特点?它的制作步骤是什么? 1. 巩固练习 (1) 完成教材70页练习十四中的第一题 (2) 完成教材70页练习十四中的第二题(直接画在书中,并追问图形中不小格相对应的圆心角的度数是多少?你是臬算的?) (3) 完成教材70页练习十四中第三、四题。 2. 全课小结(略) 第六课时 练习课 教学目标: 1. 使学生掌握条形统计图表,折线统计图表及扇形统计图的特点及制作步骤,进一步明确各种统计图表的适用范围。 2. 进一步培养学生的分析、概括能力 3. 渗透“实践第一”的观点 教学过程: 1. 讲述练习 上几节课,我们一同学习了统计图表,通过这节课的练习,要求大家掌握各种统计图表的特点和制作步骤,进一步明确各种统计图表的适用范围,并能正确制作它们。 2. 复习提问 (1) 统计图表有几种?绘制统计图表前必须先做哪些工作?(搜集资料、整理数据) (2) 统计图表的纵栏目和横栏目怎样确定?怎样画才能做到美观大方? (3) 制作统计图表一般分哪几个步骤?应注意些什么? (4) 统计图有哪几种?积肥什么特点和作用? (5) 统计图纵轴一个单位长度表示一定的数量,如何确定单位长度?绘制轴时应注意些什么? (6) 制作统计图一般分几个步骤? 学生回答问题时,教师经过整理,总结归纳如下: 意义:把搜集的资料经过整理,填在一定格式表格内,用来反映情况、说明问题。 种类: 单式统计表 统计表 复式统计表 统计图 意义:把统计资料中的数量关系用图形表达出来 之形象具体,给人印象深刻。 条形统计图 容易看出图中数量的多少 折线统计图 清楚地表示出数量增减变化的情况 扇形统计图 清楚地表示出各部分同总数之间的关系。 练习: 完成教材71页练习十四的第6题。 让学生自己动手先绘制统计表,再绘制成折线统计图。教师巡回指导,发现问题及时指出纠正。强调栏目的分项及统计图的纵轴比例尺的画法。 总结各种统计图应用的不同范围。 全课小结(略) 四、整理和复习 教学要求 通过总复习,使学生进一步理解掌握小学阶段学过的数和数的运算、代数初步知识、应用题、量的计算、几何初步知识、简单统计等知识。 使学过的知识条理化、系统化、形成比较完整的知识结构,进一步提高学生的计算能力、解答应用题的能力和综合运用知识解决实际问题的能力。 结合复习内容,向学生进行“事物之间是互相联系的”,“每一事物都有其规律性”等观点的教育,培养学生严格认真的学习态度。 教学指导 本单元内容是本册教材的重点,也是小学阶段数学知识的重要组成部分,它对于学生系统完整地掌握小学阶段数学基础知识和基本技能,对于掌握这一阶段所学知识之间的联系及知识规律,对于全面复习和巩固知识等都有着重要的意义。为此,在组织学生复习时,应注意以下几个方面。 使学过的知识条理化、系统化。为了便于教师引导学生进行系统地整理和复习,本单元在内容编排上,把小学所学过的数学知识划分为六个部分。第一部分是数和数的运算;第二部分是代数初步知识;第三部分是应用题;第四部分是量与计量;第五部分是几何初步知识;第六部分是简单的统计。在复习各部分知识时,应让学生把以前不同年段学过的同类知识,通过疏理形成一定的条理,能系统地掌握知识。如在数和数和运算中,应使学生明确已经学过的数有:自然数、整数、分数、小数。这里主要包括各种数和意义、性质、数的读法、写法、有关数的运算等知识。又如在复习应用题时,教材中主要根据解答应用题步骤和方法把应用题分为四个类型,即简单应用题、复合应用题、列方程解应用题,用比例知识解应用题。为人便于学生撑,复习中还可以列出图表,更清楚地列出各类不同的知识。这样既有利于学生回顾知识,形成系统,又有利于理解掌握,同时为沟通各部分知识之间的联系奠定了基础。 在加强基础和知识复习的过程中,注重沟通各部分知识之间的联系,使学生掌握知识规律。在复习各部分知识时,应使学生在进一步理解基础知识的基础上,熟练地掌握。应注重让学生理解各部分知识之间的联系和区别,如整数、分数、小数的意义与数的读、写之间,与数的四则计算之间的关系。数的意义是基础,数的读写及四则计算是数的意义的运用过程,在运用的过程中,也是对其意义进一步理解的过程。又如,用算术与用列方程解答应用题之间的联系与区别,正比例的反比例概念之间的联系和区别,简单应用题与复合应用题之间的联系与区别,以各种应用题之间的联系与区别等。中掌握知识规律,培养学生的能力。 查漏补缺,因材施教,提高复习效益。 复习前,应全面调查了解每个学生对各部分知识掌握情况,制定相应的复习计划,有针、对性地进行复习的指导。要树立面向全体学生的思想,精心组织复习内容和方法,使各个层次的学生都有收获,都有提高,都得到发展。 第一课时 数和数和运算 教学内容:数的意义、数的读法和写法(教材91-94页,96页的1-2题) 教学要求: 使学生进一步理解自然数、整数、分数、小数等有关概念,理解掌握它们之间的关系,能运用这些概念来解决有关的问题。 理解掌握整数、分数、小数的读写方法,能正确熟练地读写这些数。 教学过程: 从今天开始,我们学习第四单元 ---(整理和复习)。本单元内容不仅是本册教材的一个重点,也是小学阶段数学知识的重要组成部分,这部分内容是对小学阶段数学知识的总结和概括,同时又是中学数学知识的重要基础。为此,必须认真地学好本单元,要积极主动地搞好整理和复习,使学过的知识条理化、系统化、形成比较完整的知识结构。 复习数的意义 举例说说,小学阶段学习了哪些数? 教师板书:自然数、整数、分数、小数。 理解整数、自然数、0之间的关系。 自然数:用来表示物体个数的0、1、2、3……。 整数 自然数 0:一个物体也没有,用0表示 比0小的数(以后学习的内容) 练习73页“做一做”。 理解小数与分数之间的关系。 提出问题: 小数与分数之间有什么联系? 小数分几种情况,划分的根据是什么?当学生总结后,可归纳如下: 有限小数:小数部分的位数是有限的。 小数 无限小数(循环小数):小数部分的位数是无限的。 整数和小数位顺序表,理解整数与小数之间的联系。 让学生填写教材74页整数和小数数位顺序表。 请学生观察数位顺序表,回答问题: 什么叫数位? 整数与小数之间有什么联系? 练习教材75页上的“做一做”。 理解百分数的意义及有关术语。 举例说说什么叫百分数。 练习教材75页下的“做一做” 3.复习数的读法和写法 请同学们总结整数的写法。 请同学们想一想:小数和分数应怎样读?怎样写? 练习教材76页上的“做一做” 巩固练习 做78页练习十五中第1题、第2题中的(1) 全课小结 第二课时 数的改写 数的大小比较 教学要求: 使学生进一步理解数的改写方法,能正确熟练地把一个较大的多位数改写以“万”或“亿”作单位的数和求近似数;能正确熟练地进行分数改写以及分数、小数、百分数之间的互化。 进一步理解整数、小数、分数比较大小的方法,能正确熟练地进行这些数的大小比较。 教学过程: 1.讲述复习内容,提出目标要求 2.复习数的改写 (1)读出下列各数:235800 345000 345000000 当学生读出来以后,让学生思考: 如何将这两个数分别改写成以万、亿作单位的数? 如何求一个整数近似数? 把一个数改写成以万或亿作单位的数与求一个整数的近似数人什么联系和区别? 235800=23.58万 345000000=3.45亿 235800≈24 345000000≈3亿 应使学生明确,把一个数改写成以万、亿或其它单位的数,得到的是准确值时,用等号联接两个数,而求近似数,得到的是近似值,用约等号联接两个数。 (2)复习求小数近似数的方法,并比较与求整数近似数人何相同点? 让学生讲清求小数近似数的方法,然后,找出二者相同点: 一般都是用四舍五入法。 “舍”或“入”都是由规定位数的下一位数值决定的。 完成教材76页下的“做一做” 复习分数之间的改写和分数、小数、百分数之间的互化。 先让学生举例说说分数有哪几种,然后做练习, 2) 分数 小数 百分数 1/20 0.75 45% 举例说说怎样判断一个分数能不能化成有限小数? 复习数的大小比较 练习教材77页的“做一做” 巩固练习 教材78页第2题中(2)题、79页3题、4题。 教材79页5题、6题。 第三课时 数的整除;分数、小数的基本性质。 教学要求: 使学生进一步理解整除、约数、倍数、公约数、公倍数、最大公约数、最小公倍数、质数、合数、互质数、质因数、分解质因数、能被2、3、5整除数的特征等概念,并进一步理解它们之间的联系与区别。 进一步理解分数、小数、的基本性质;小数点移动引起小数大小变化的规律。 教学过程: 今天我们复习有关数的整除的知识和分数、小数的基本性质。这部分知识的要领较多,它又是有关运算和解决这些概念,掌握有关概念的联系。 复习数和整除 由“整除”这个基本概念引出有关概念。 举例说说什么叫整除,什么叫约数和倍数。 如24÷6=4 36÷12=3 24能被6整除 36能被12整除 思考:3÷2=1.5 6÷1.5=4这两个式是否表示整除关系?为什么? 总结整除的概念: 应注意两点:1)被除数和除数(不等于0)必须是整数: 2)商也是整数且没有余数。 进一步理解质数、合数、互质数、质因数、分解质因数的概念,以及它们之间的关系。 (把24、36分解质因数,通过分解来进一步理解上述概念) 举例说说能被2、3、5整除数的特征,以及偶数与奇数。 通过上述分析过程,逐步形成下列板书: 教材81页上的“做一做” 复习分数、小数的基本性质 在括号里填上合适的数,并说出根据。 1/2=()/4=6/()=()/20 6/18=()/6=3/()=1/() 在()里填“>”“<”或“=” 12.05()12.050 1.402()1.420 0.03()0.0300 0.08()0.8 举例说说小数点移动位置后,小数大小会发生什么变化? 完成81页下的“做一做” 巩固练习 完成教材练习十六中第1、2题。 写出能同时被2、3、5整除的最小两位数。 完成教材练十六中第3、4、5、6题。 练习十六第7~12题。 第四课时 四则运算的意义和法则 教学要求:通过要求,使学生进一步理解四则运算的意义、四则运算的法则,进一步理解它们的联系,能正确、熟练地进行四则计算。 教学过程: 本节课我们复习四则运算的意义和法则,通过复习要进一步理解四则运算的意义和法则,理解它们之间的联系,能正确、熟练地进行四则计算。 复习四则运算的意义 我们在小学阶段学过了哪几种运算?举例说说它们的意义各是什么? 进一步理解整数、小数、分数四则运算的意义及它们之间的联系和区别。 复习四则运算法则 先计算下列各题,再思考回答问题 整数、小数和分数的加法和减法的计算法则有什么共同点? 小数乘法和除法的计算法则与整数乘法和除法有什么相似的地方?有什么不同? 说一说分数乘法和除法的计算法则。 完成教材85页中的计算题。(要结合运算法则和学生的实际情况,指出应注意什么) 指导口算,说出口算过程。完成教材85页下边的题目。 完成练习86中第1、2、题。 进一步掌握四则运算中的特殊情况。 完成教材86页上边的练习。(应使学生明确a代表一个数,当学生做完后,能用语言叙述式子。如a+0=a,一个数加上零还等于这个数) 进一步理解四则运算关系 完成教材87页中间的等式。并说说怎样运用这些关系对加、减、乘、除法的计算题进行验算。 完成教材87页中的“做一做” 巩固练习 完成练习十七3~6题。 第五课时 运算定律与简便算法、四则混合运算。 教学要求: 通过复习,使学生进一步理解小学阶段所学习的运算定律,能应用其进行合理灵活的计算。 进一步理解四则混合运算顺序,能正确、熟练地进行计算。 教学过程: 复习运算定律与简便算法。 请同学们回忆一下,小学阶段学过了哪些运算定律? 请同学们把教材87页上边的表填完整。 学习例1 观察例1这个算式的各个数什么特点,能用什么运算定律进行简算。 学生独立解答例1,并说明如何运用计算定律的。 小结:结合本班学生的实际情况提出应注意的问题。 试做87页的“做一做”。 复习四则混合运算 说明第一级运算和第二级运算的概念。 请同学们说说四则混合运算的顺序。 请学生独立完成例2 小结:在进行四则混合运算式题中,应做到:一看,算式中含有哪些运算?有哪些数?二想,这些运算和数字有何特点,是否可以简算?三算,动笔计算。四检验,检查各计算是否正确。 巩固练习 完成教材90页第7题。学生做完后,可以互相交流一下简算的方法。 选择正确的答案序号填在括号里。 4/7+4÷4/7+4计算结果是() A 1 B 11 4/7 C 12 8×( 6+ 1/4)=8×6+8×1/4=48+2=50的计算依据是() A 乘法结合律 B 乘法交换律 C 乘法分配律 完成教材90页第8题。练习中,先让学生判断正确还是错误的,然后分析错误的原固,最后再改正过来。 完成教材90页第9、10题。 第六课时 四则运处的意义和法则 教学要求: 使学生进一步理解四则运算的意义、定律、法则。 能正确地、合理灵活地进行四则计算和四则混合计算, 教学过程: 练习 选择正确答案的题号填在括号里。 计算(5 8/15+7.8-3.5÷7/15)×5/7时()比较简便。 把分数化成小数 把小数化成分数. 学生在完成选择题后,分别总结四则混合运算顺序和在分数、小数混合运算中把分化成小数还是把小数化成分数计算简便,总结其规律。 试做教材91中第11题、第12题。 口算练习,提高学生口算能力。 1/2+1/3 1.5+1/2 3/4÷3/4 8 4/7×0 25.4÷1 2+3 3/4 脱式计算。 完成教材91页第13题。学生计算后,要说说估算的方法,通过估算和计算,对其结果进行比较。 引导学生分析、解答91页第14题、15题和思考题。(鼓励学生积极思考,展示自己思维过程) 全课小结 代数初步知识 用字母表示数与简易方程 教学目标: 使学生进一步理解用字母表示数的优越性;熟练掌握用字母表示公式、计算法则和常见的数量关系等。 进一步认识理解并区别方程的意义、方程的解和解方程等概念;熟练正确地用方程解答有关的文字题,促进学生的智力发展。 教学过程: 我们已经学过代数的初步知识,这节课我们来进行复习,首先学习用字母表示数和简易方程 基本复习 用字母表示数 自学教材92页第一自然段,说说用字母表示数有什么意义或者优点。 用字母表示下面的公式。 路程(S) 时间(t) 速度(v) S=( ) 正方形面积(S) 边长(a) S=( ) 规范书写 问题:在一个含有字母的式子里,数字与字母,字母与字母相乘时,怎样正确规范地书写呢?(教师读,学生在练习本上书写) a乘以4.5写作( );S乘以h写作( ) 反馈: “a乘以4.5”可写成:a×4.5、a.4.5或4.5a,但不能写成 “a4.5”。(然后再让学生把书中相应的空填上。提示学生最简便的表示法,如:“4.5a”)。 法则回顾:谁能说说同分母分数相加的计算法则? 如果用a、b、c表示三个自然数,那么此法则可写成:a/c+b/c=()+()/()(让学生填空) 完成教材92页的“做一做” 简易方程 有关概念的复习 什么叫方程?(举例说) “方程的解”与“解方程”有什么区别? (让学生的实际例子中进一步理清概念间的联系与区别。如:方程4x=36解得x=9。X=9说是方程4x=36的解---使方程左右两边相等的未知数的值,它是一个数值。而解方程是指求方程的解的过程,它是一个演算过程) 应用加、减、乘、除法中各部分间的关系解方程。 口述解方程的依据? 例:9+x=12(根据一个加数等于和减去另一个加数,得: x=12+9,所以x=3)(以下略) x-18=38 2.5x=10 46÷x=2 x÷15=4 完成教材93页的“做一做” 教材例题(先让学生试做并口头检验,然后完成书中“想一想”的内容) 小结:(根据本班级学生学,列出方程后,在解法上注意与前面的简单方程作比较;设所求数为x,让x当成已知数参加运算,是便于思考的原因。) 完成教材93页“做一做” 练习巩固 用线把两个相关的式子或语言连起来。 判断题 a+a=a2 () a3=a+a+a () a+a=a2 完成教材十八页第1~2题。 全课总结(略) 作业 练习十八第3~4题。 第二课时 比和比例 教学目标: 使学生进上步理解和掌握比和比例的意义与性质。 区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。 教学过程: 讲述本课复习课题并板书 基本概念的复习 比和比例的意义与性质。 什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0? 比和分数、除法有什么联系? 说说比的基本性质的比例的基本性质? 比的基本性质与比例的基本性质各有什么用处? 看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的? 完成教材95的“做一做”。 结合第3题让学生说说什么叫做解比例?根据是什么? 示比值和化简比。 独立完成教材96页上的题目。 说说求比值与化简比的区别? (求比值是根据比的意义。用前项除以后项,得到 结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。 看书中的表,总结方法。 完成教材96页的“做一做” 比例尺 问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。 2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思? 比例尺除写成数字化形式处,还可怎样表示? 完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。) 练习巩固 填空。(回答) 计算 完成教材十九页第1~4题。 全课总结(略) 第三课时 正比例和反比例 教学要求: 使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。 进一步提高解决简单实际问题的能力。 教学过程: 提出本课复习题 基本概念的复习 什么叫两种相关联的量? 下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例? 什么样的两种量成正比例关系?什么样的两种量成反比例关系? 成正比例关系的量与成反比例关系的量有什么异同点? 应用练习 完成教材97页的“做一做”。 第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。 巩固练习 完成教材99页第6~7题。 全课总结(略) 应用题 第一课时 简单应用题 教学目标: 通过简单应用题的复习,使学生进一步明确分析数量关系的具体做法,培养学生有条理的思维程序。 通过一题多问的形式培养学生求异思维能力和运用常见的数量关系解决简单的实际问题的能力。 教学过程: 基本复习 回答。 提问:以上各题都是用几步解答的? 教师概括:用一步解答的应用题是小学数学中最基本的应用题或者说是简单应题,它是解答各种应用题的基础,我们首先应学好它。 揭示课题 看书自学101页第二自然段并思考:解答简单应用题时先做什么?然后做什么?最后做什么? 回答思考题 师:我们这节课就要进一步复习与束理简单应用题。(教师板书课题) 学习例题 独立解答例1后,在书上完成编题要求。 归纳小结:从以上解答中可以看出,根据题中的已知条件,除可以求出它们的和或者差是多少之处,还可以求出什么? 调换条件与问题练习 师:通过例1,我们已经研究了用加、减、乘、除法解答一些简单应用题的数量关系,现在我们再来复习一些常见的数量关系。 常见数量关系的复习整理。 举例说明教材102页表中各组数量的意义,再把数量关系式填入表中。 根据表中的数量关系式,各编出三道不同的应用题。 进一步理解简单应用题是由两个已知条件与一个问题构成的。 学习例2 根据教材书中右面的算式补充条件,编成不同的简单应用题。 巩固练习 根据已知条件,分别提出用一个减法,二个除法解答的不同问题,并列出算式。 小红读一本书,第一天看了20页,第二天看了50页。 问题: 算式: 用减法 用除法 用除法 完成练习二十第1~2题。 完成练习二十第3题(只列式) 全课总结 第二课时 复合应用题 教学目标: 使学生进一步理解复合应用题的结构,掌握分析复合应用题的数量关系的方法。 通过不同的分析思路进一步提高学生解答应用题的能力。 教学过程: 揭示复习的内容 师:上节课我们复习了简单应用题,也就是用一步解答的应用题。那么用两步或者两步以上解答的应用题我们叫它复合应用题。谁能说说什么叫复合应用题。(板书课题) 讲授复习内容 回顾解答步骤 读懂题意,找出已知条件和所求问题。 借助线段图等分析数量关系,分析已知条件和已知条件的关系、已知条件和所求问题的关系,明确先算什么,再算什么?最后算什么? 列式解答并写出答案 检验 自学教材103页例2。比较三道题有怎样的联系和区别?(从以下方面比较) 前两小题比较:第一小题直接告诉“原计划每小时走3.75千米”,而在第二小题变为间接条件---“原计划3小时走完11.25千米”这就是用两步计算的原因。 第二、三题在第三小题变为间接条件—“实际2.5小时走完原路程”。这就是用三步计算的原因。 运用分析、综合等方法分析数量关系。在此基础上归纳例2的解题关键。 关键:都要先求出原计划每小时走多少千米和实际每小时多少千米。从而看出复合应用题是由两个和两个以上简单应用题组成的。 巩固练习 学校买来4袋水泥,每袋50千克,用去150千克,还剩下多少千克?(用综合法和分析法并列综合算式) 完成教材练习二十第7题。 第二课时 复合应用题(工程问题) 教学目标:运用对比的方法使学生进一步弄清“工程问题”的数量关系。掌握不同的叙述方式。通过一题多解培养学生思想的灵活性以及具体问题具体分析的能力。 教学过程: 这节课我们来复习应用题中的工程问题。(板书:工程问题) 基本练习 根据工效、时间、工作总量之间的关系说说工作总量=( ); 时间=( ); 工效=( ) 先具体说说下面的工程问题中的工效、时间和工作总量各指什么而言;然后用两种方法解答。 修一条长600米的公路,甲队单独修要5天完成,乙队单独修要4天完成。两他合修几天完成? (对比两种题解答方法,哪种较简便?从中得出怎样的规律?突出工程问题的分析解答方法) 指导学习例3 出示1)题(审题略) 师:从题目的问题入手,要求剩下的化肥要运几次,需要知道什么?(剩下的吨数、拖拉机的载重量) 师:它们是怎样的数量关系? 列综合算式,并说说算式每步的意义。 出示2)题,读题审题完后,教师启发学生想:如果用(1)题的思考方法,这里的化肥吨数应怎么看?汽车和拖拉机各自的效率呢? 列综合算式,说说算式每步的意义 比较上面两题的异同点 相同点:数量关系相同,解答方法一致 不同点:1)题给的条件是具体的吨数。 题给的条件是从份数的角度思考。 完成教材103页的“想一想”。 巩固练习 在完成教材106页12题后,思考:如果把第一个问号去掉应怎样列综合算式?让学生明确第一个问号是为求出最后问题而需要先求出的间接条件。 找出下面题中的间接条件并转化为直接条件。 快车和慢车同时从甲乙两地相向出发,快车每时行全程1/8。慢车每时行全程的1/10,它们几间相遇。 一份稿件甲单独打要4时完成,乙单独打要6时完成。如果甲先打2时,剩下的由乙打,还需几时完成这份稿件? 完成教材106页13题,解答后让学生对比一下算式,说说有什么不同?为什么不同? 全课总结 第四课时 列方程解应用题 教学目标: 使学生进一步明确列方程解应用题的关键。 沟通与算术方法解的联系与区别,排除知识间的干拢,进一步提高学生解决简单实际问题的能力。 教学过程: 想一想:列方程解应用题的关键是什么?(找准题中的等量关系,或者说找出数量间相等的关系。) 根据例子找出数量间相等的关系。 例:“篮球比足球多5个”。数量是相等的关系是:足球的个数+5=篮球的个数。 练习: 基本练习..课件列方程解应用题1.ppt 学生独立解答例3。然后说主自己的分析解题思路,最后理清下面问题。 从题目的本身和解答方法进行比较看,两道题基本数量关系是什么? 客车和货车每时共行的距离×时间=甲乙两站间铁路长。 在什么情况下用算术方法解答较简便?在什么情况下列方程解比较简便? 总结:第(1)题是已知两车速度与时间,求路程,直接改用算术方法(乘法)解答很方便。第(2)题是已知两车速度与路程,求时间,可根据第(1)题中的等量关系列出方程式——60x+55x=460或者(60+55)x=460较为方便。如果用算术方法解则需逆向思考。第3题也说明了这个道理。 小段练习: 说说下面各题用什么方法解答较简便?为什么? 巩固练习 完成教材109页第1题。 学校图书室有文艺书2280本。比科技书本数的3倍还多48本,科技书有多少本?设科技书有x本,选择下面正确的方程。 3x-48=2280 3x+48=2280 2280+3X=48 完成教材109页2题、3题 全课总结(略) 分数应用题 教学目标: 使学生比较系统地掌握分数应用题的解答方法。弄清稍复杂的分数应用题是从基本题扩展而来的,抓住关键提高学生的辩别能力。 使学生能够正确地选择适当的方法解答分数(百分数)应用题。 教学过程: 指导学习例题 基本复习: 谁能根据这两个已知条件提出简单的用分烽解的问题并列出相应的算式。(水彩画是蜡笔画的几分之几?50/80;蜡笔画是水彩画的几分之几?80/50) 稍复杂分数应用题的复习: 根据上面已知条件,教师提出“蜡笔画比水彩画多几分之几”谁会列式并算出结果?(学生列式教师板书(80-50)÷50=3/5)如果提出“水彩画比蜡笔画少几分之几”又该怎样列式?结果又是多少?学生列式教师板书(80-50)÷80=3/8) 提问:解答以上问题列式的关键是什么?关键弄清哪个量是哪个量、哪个量比哪个量多(少)几分之几。“是”和“比”后面的量就看作单位“1”的量做除数,前面的量则做被除数。 稍有变化的复习题:根据上面总结的解题关键,我们来讨论下面两个问题。(教材111页的两道小题,可一一出示后让学生列式解答。) 总结解答方法: 找准题中单位“1”的量。 看单位“1”的量是已知还是未知。(单位“1”的量是已知就用乘法解答,否则可用方程解) 单位“1”的量×几分之几=几分之几的量 完成教材111页例4的“想一想”: 教师强调说明解题方法一样。因为这里的分数与百分数都是表示两个数的相除关系,实质是一样的,只是形式不同,如最前面的基本题中最后结果要化成百分数。 3.巩固练习 只列式说得数。 完成教材113页的“做一做”。 小军看一本240页的书,第一天看了全书的1/5,第二天看了全书的1/4。 1)240×1/5求的是( )。 2)240×(1/4-1/5)求的是( )。 3)240×(1/4+1/5)求的是( )。 4)240×(1-1/4-1/5)求的是( )。 解答下面各题 一根铁丝第一次截去全长的 3/7,第二次截去3/7米,还剩下全长的3/7。这根铁丝有多长? 光明学校的男生数占全校学生的33%,比女生少170人,女生有多少人? (此二题可供班级中优等生解答,对学习有困难的同学可做教材练习二十八第一题。) 4.全课总结(略) 第六课时 用比例知识解应用题 教学目标: 使学生进一步理解和掌握用比例知识解答应用题的方法。 抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。 通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。 教学过程: 师:谁能够说说用比例知识解应用题的关键是什么? 判断下题中各量成什么比例?并说明理由? 指导学习题例。 让学生独立解答例7。 在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。 相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。 不同点:第一种解法是直接设所求问题为X。 第二种解法是间接设,即解出X后,还要用X减3才是所求问题。 师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。 学习例6 师:请同学们在教材上完成例 6后,再用算术方法解答。说说用比例解例6的关键。 对比小结 比较例5 例6有什么不同?分别是根据什么关系来解答的? (强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答) 算术解法和比例解法的比较和联系。 观察算式(例5) 练习巩固 填空。(用比例知识) 笔答题:教材117页1~3题。 用比例和算术两种方法解答下题。 全课总结(略) 第七课时 用不同知识解答应用题 教学目标: 通过复习用不同的知识解答应用题,使学生更深入地理解题中的数量关系,进而达到熟中生巧,灵活运用知识,进一步提高解答应用题能力,使知识间融会贯通,形成网络。 教学过程: 师:根据数量的倍数关系,有的应用题可以用不同的知识来解答。(板书课题) 复习 什么叫做比?比同除法、分数有什么关系? 如果甲数是乙数的6倍,那么: 1)乙数是甲数的 2)甲数与乙数的比( ):( ); 3)甲数与甲乙数和的比是( ):( ); 4)乙数与甲数两数和的比是( ):( ); 新授 学习例6。 先出示例6,弄懂题意后大家研究,看谁想的解法最多。 有针对性地说说每种解法的具体思路。 用方程解应怎样想? 如果把题中的第二个已知条件改成“松树和柏树棵数的比是几比几?”这时可用什么方法来解? 如果这道题想用比例来解,怎样改变题中的已知条件? 在书上完成例6的解答。 你还能想出其它解法吗? 用分数应用题方法解:把“松树棵数是柏树的4倍”看成“柏树棵数是松树的1/4”既:松树的棵数为120÷(1+1/4)=96(棵);柏树为120-96=24(棵)。 按整数应用题(和倍问题)方法解:柏树的棵数为120÷(1+4)=24(棵),柏树。(略) 小结:就数量之间的倍数关系来说,同类知识虽表示的形式不同,但它们都有着密切的联系。今后解题时,除有特殊要求处,你只要用自己最熟悉的一种解法计算就可以了。 巩固练习 (1) 填空: 说说下题的列式各是用什么知识解答的。 (3)完成教材116页的“做一做”(每题用一种方法即可) 完成教材117页的第1~2题(学有余力的学生可用不同和知识解答) 全课总结(略) 量的计量 第一课时 量的计量 教学目标: 通过系统的整理和复习小学数学中学过的计量单位,准确把握每种相邻单位之间的进率,以及不同量的计量之间的联系和区别。 2.进一步培养学生的空间观念。 师:我们在日常生活和工农业生产、科学研究中,经常进行各种量的计量。每种量都有自己的计量单位,我国现在采用的法定计量单位与国际通用的计量单位是一致的。这节课我们来复习量的计量。(板书课题) 复习各种量的计量单位以及各自的进率。 长度、面积、体积单位复习。 举例说说什么叫相邻单位? 以上三种单位的进率有什么规律? 见教材118页三种量的图示,用尺量一量然后说说各表示什么?(1厘米、1平方厘米、1立方厘米) 在括号里填上适当的进率。 小段练习填空(说说部分空的根据) 重量单位的复习 常用的重单位有哪些? 填写教材118页的表。说说它们的进率关系。 练习:6000千克=()吨 2千克=()克 时间单位的复习 按从大到小的顺序排列下面的时间单位。 分、时、秒、月、日、年、世纪 填写教材119页的时间单位表。说说各自的进率。 怎样判断某一年是闰年还是平年? (年份能被4整除的是闰年,不能被4整除的是平年) (整百数年份能被400整除的才是闰年,如1900年虽能被4整除,但不是闰年) 名数的改写复习 看教材119页“名数”的示意图,举例说说什么叫名数、单名数、复名数。 看书自学有关内容说说怎样把高级单位的数改写成低级单位的数?怎样把低级单位的数改写成高级单位的数? 练习:先填写教材119页例题的空。再结合教材120页说说填空的过程。 巩固练习 完成教材120页的“做一做” 全课总结(略) 第二课时 量的计量的巩固练习 教学目标:结合本班学生的实际进行有针对性的练习,进一步分清楚各计量单位间的联系和区别,以便应用时达到一定的熟练程度。 教学过程: 提出本课练习内容并板书课题 易混进率的对比练习。 1)时、分、秒时间单位之间进率是怎样的? 1时=60分 1分=60秒1时=()秒 米、分米、厘米、毫米相邻单位之间的进率是多少?相对应的面积、体积相邻单位之间的进率各是多少?你是臬记住它们的? 培养学生空间观念的练习 说说什么是1平方米、1立方米? 在括号里填上适当和计量单位。 有关单名数、复名数的练习 计量单位的填空练习 判断(正确在括号里画 √,错的画×) 1. 全课总结(略) 几何的初步知识 第一课时 复习平面图形的认识 教学目标:通过复习使学生进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以及各图形的联系。‘ 教学过程: 直线、射线、线段。 提问:1)分别说一说什么叫直线、射线、线段? 直线、射线和线段有什么区别? 完成123页上面的“做一做”。(学生笔做) 角 提问:1)什么叫做角? 2)角的大小与什么有关? 整理:把表中的空格填写完整。 完成123页下面“做一做”的1题、2题。 锐角 直角 钝角 平角 周角 大于0° 小于90° 垂直与平行 提问: 1)在同一平面内,两条直线的相互位置有哪几种情况? 2)什么样的两条直线叫做互相垂直? 什么样的两条直线叫做互相平行? 回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平 完成教材124页的“做一做” 三角形。 提问: 1)什么叫做三角形? 2)在下面的三角形中,顶点A的对边是指哪一条边? 先笔做:以顶点A的对边为底,画出三角形的高,并标出底和高。(前页一幅图) 在下面的表中填写三角形的名称和各自的特征。 名称 图形 特征 回答:锐角三角形、直角三角形、钝角三角形的联系与区别。 四边形 提问:什么叫四边形? 回答:看图说出下面各图的特点,再说一说图中各字母表示什么 想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形? 完成125页“做一做”中的1、2题。 综合练习填空 第二课时 复习平面图形的认识 教学目标:通过复习使学生进一步理解圆与扇形、对称图形的概念;掌握它们的特征和性质;以及各图形之间的联系。 教学过程: 圆与扇形 请你画一个半径为2厘米的圆,并用字母o、r、d分别标出它的圆心、半径和直径。 回答: 什么叫圆的半径?直径? 在同一个圆里,、有多少半径?有多少直径?它们的长度有什么关系? 什么叫扇形?(让学生笔做上题再回答) 想一想:扇形的大小是由什么决定的? 完成126页的“做一做” 轴对称图形。 什么叫图形叫做轴对称图形? 什么叫做对称轴? 想一想:我们学过的图形中,还有哪些是轴对称图形。观察你周围的物体,看看有哪些 物体的形状是轴对称图形。 完成127页练习二十六第1~4题。 全课总结(略) 第三课时 复习平面图形的周长和面积 教学目标: 通过复习使学生进一步理解平面图形的周长与面积的概念;掌握周长和面积公式的推导过程;正确运用这些公式,熟练进行计算。 教学过程: 提问:请你举例说明什么是平面图形的周长?什么是平面图形的面积? 出示教材128页中间的两幅图。 比较各组图形的周长和面积,在每一组中两个图形的周长相等吗?面积相等吗? 生:看图回答 看图写出下面各图形的面积计算公式及周长计算公式,(用字母表示)并说一说这些计算公式是怎样导出的。 C= S= S= S= S= C= S= S= C= 作业 完成129页1~11题。 注意:第10、13题是一些联系实际的计算题。解答时让学生注意统一计量单位。 第四课时 综合复习(平面图形的认识、周长和面积) 教学目标:通过复习使学生更进一步理解平面图形的概念,正确掌握平面图形的周长和面积计算公式,熟练运用公式计算,并能解决实际问题。 教学过程: 复习 回顾知识 说一说你都学过哪些线?各有什么特征? 说一说你学过哪七种平面图形?各有什么特征? 说一说你都学过哪些平面图形的周长?它们的计算公式各是什么? 说一说你都学过哪些平面图形的面积?它们的计算公式各是什么? 揭示规律。 看书128页下面的图形,说一说这些平面图形的计算公式是怎样推导出来的? 巩固练习 教师参照129页练习二十七和129页练习自编练习题。 第五课时 复习立体图形的认识、表面积的体积 教学目标:通过复习使学生进一步理解立体图形的概念和特征,掌握立体图形的表面积和体积公式的推导过程,正确运用公式,熟练进行计算。 教学过程: 复习 基本练习(立体图形的认识) 说出各图形的名称,说一说图中各个字母表示什么。 如果把这些图形分成两类,可以怎样分?为什么? 说一说长方体和正方体有什么特点?它们有什么不同? 说一说圆柱和圆锥有什么特点? 完成131页“做一做”中的1、2题。 巩固练习 练习二十八1、2、3 第五课时 复习立体图形的认识、表面积和体积 教学目标:通过复习使学生进一步理解立体图形的概念和特征,掌握立体图形的表面积和体积公式的推导过程,正确运用公式,熟练进行计算。 教学过程: (1)基本练习。(立体图形的认识) 出示教材132页上面的五个图形,说出各图形的名称,说一说图中各个字母表示什么。 如果把这些图形分成两类,可以怎样分?为什么? 说一说长方体和正方体有什么特点?它们有什么不同? 说一说圆柱和圆锥有什么特点? 完成133页中的1、2题。 (2)复习立体图形的表面积和体积 举例说明什么是立体图形的表面积?什么是立体图形的体积? 投影图片出示132页中间的三幅图形。 结合图示想一想:长方体、正方体和圆柱的表面积各应怎样计算?根据图中给出的条件,用字母表示它们的面积。 整理:长方体表面积( ) 正方体表面积( ) 圆柱表面积( ) V= v= v= v= 结合图形,分别写出各图形体积的计算公式。(用字母表示)并说一说它们有什么联系。 第六课时 巩固练习(立体图形的表面积和体积) 教学目标:通过复习使学生进一步理解立体图形的表面积和体积的概念,掌握立体图形表面和体积公式的推导,并能熟练运用公式正确计算。 教学过程: 基本练习 说出各图形体积的计算公式,并说一说它们有什么联系。 说出它们的表面积应怎样计算。 圆柱体表面积= 正方体表面积= 长方体表面积= 134页第11题。(计算后让学生说一说理由) 第七课时 综合复习(平面图形的周长和面积、立体图形的表面积和体积) 教学目标:通过复习使学生更加深刻理解平面图形的周长和面积,立体图形的表面积和体积的概念,熟记它们的公式 ,正确计算,并能解决实际问题。 教学过程: 说一说你学过哪些平面图形的面积?它们的计算公式各是什么? 说一说你学过哪些平面图形的周长?它们的计算公式各是什么? 说一说你学过哪些立体图形的表面积?它们的计算公式各是什么? 说一说你学过哪些立体图形的体积?它们的计算公式各是什么? 比较 平面图形的面积和立体图形的表面积有什么不同? 平面图形的周长和面积计算单位有什么不同? 立体图形的表面积和体积的计量单位有什么不同? 巩固练习 149页练习三十三和153页练习三十四自编练习题。 简单的统计 第一课时 复习平均数例1、例2;统计表 教学目标: 通过例1的复习使学生进一步加深对求平均数问题中数量关系的理解及怎样求出总数等内容和理解。 通过例2的复习进一步掌握求稍复杂的平均数问题的方法。 通过复习使学生进一步学会整理数据、编制统计表,并能应用原始数据和表格计算有关的问题。 教学过程: 复习平均数。 出示例1 问:要求七个班的平均人数,该怎样算?让学生自己算出结果。 想一想:如果已知七个班的平均人数,求这七个班的总人数,该怎样算?让学生自己解答。 通过计算让学生总结出求平均数问题的计算方法。 出示例2 学生想:要求五年级平均每人做多少个,必须先求出( )和( ) 让学生自己列式解答。 让学生总结求较复杂平均数问题的计算方法。 完成137页的“做一做” 复习统计表 出示137页的例题。 让学生把计算结果填入表中的空格,再验算合计数和总计数,看看计算的结果对不对。 完成138页的“做一做” 第二课时 复习统计图 教学目标: 通过复习让学生归纳整理折线统计图、条形统计图和扇区形统计图的特点和作用。进一步加深理解它们各自的特点,初步了解在什么情况下用什么统计图反映情况较为合适。 教学过程: 复习 回答 你学过哪几种统计图? 出示某电子仪器一厂和二厂在三个方面的统计图。 回答四个问题 从折线统计图中可以看出,哪个厂的产值增长和快? 从条形统计图中可以看出,哪个厂的工人人数多?哪个厂的技术人员多? 从扇形统计图中可以看出,哪个厂的外销产品占销售总数的百分比大? 综合上面的分析,你认为哪个厂的生产搞得好?为什么? 引导学生把三种统计图的特点和作用进行概括和总结。 让学生看书或出示140页三种统计图的特点和作用表。 完成140页“做一做”中的第1、2题。查看更多