- 2021-05-22 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教版(理)第一章第三节 函数及其表示作业
限时规范训练(限时练·夯基练·提能练) A级 基础夯实练 1.(2018·河南濮阳检测)函数f(x)=log2(1-2x)+的定义域为( ) A. B. C.(-1,0)∪ D.(-∞,-1)∪ 解析:选D.要使函数有意义,需满足解得x<且x≠-1,故函数的定义域为(-∞,-1)∪(-1,). 2.已知函数f(x)=若f(2 019)=0,则a=( ) A.0 B.-1 C.1 D.-2 解析:选B.由于f(2 019)=f(-2 019)=f(-404×5+1)=f(1)=a+1=0,故a=-1. 3.(2018·山西太原二模)若函数f(x)满足f(1-ln x)=,则f(2)等于( ) A. B.e C. D.-1 解析:选B.解法一:令1-ln x=t,则x=e1-t,于是f(t)=,即f(x)=,故f(2)=e. 解法二:由1-ln x=2,得x=,这时==e, 即f(2)=e. 4.设函数f(x)=若f=4,则b=( ) A.1 B. C. D. 解析:选D.f=3×-b=-b, 当-b≥1,即b≤时,f=2-b, 即2-b=4=22,得到-b=2,即b=; 当-b<1,即b>时,f=-3b-b=-4b, 即-4b=4,得到b=<,舍去. 综上,b=,故选D. 5.(2018·宁波模拟)下列函数中,不满足f(2x)=2f(x)的是( ) A.f(x)=|x| B.f(x)=x-|x| C.f(x)=x+1 D.f(x)=-x 解析:选C.对于选项A,f(2x)=|2x|=2|x|=2f(x);对于选项B, f(x)=x-|x|= 当x≥0时,f(2x)=0=2f(x),当x<0时,f(2x)=4x=2·2x=2f(x),恒有f(2x)=2f(x); 对于选项D,f(2x)=-2x=2(-x)=2f(x);对于选项C,f(2x)=2x+1=2f(x)-1. 6.(2018·南昌模拟)已知具有性质:f=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数: ①y=x-;②y=x+;③y= 其中满足“倒负”变换的函数是( ) A.①② B.①③ C.②③ D.① 解析:选B.对于①,f(x)=x-,f=-x=-f(x),满足;对于②,f=+x=f(x),不满足;对于③,f= 即f=故f=-f(x),满足. 综上可知,满足“倒负”变换的函数是①③. 7.(2018·河南南阳模拟)某学校要召开学生代表大会, 规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为( ) A.y= B.y= C.y= D.y= 解析:选B.取特殊值法,若x=56,则y=5,排除C,D;若x=57,则y=6,排除A,选B. 8.(2018·湖北十堰月考)若f(x)=,则f(x)的定义域为________. 解析:要使原函数有意义,则log(2x+1)>0,即0<2x+1<1,所以-<x<0,所以原函数的定义域为. 答案: 9.已知函数f(x)=若f(1)=,则f(3)=________. 解析:由f(1)=,可得a=,所以f(3)==. 答案: 10.若函数y=的定义域为R,则实数a 的取值范围是________. 解析:因为函数y=的定义域为R, 所以ax2+2ax+3=0无实数解, 即函数y=ax2+2ax+3的图象与x轴无交点. 当a=0时,函数y=的图象与x轴无交点; 当a≠0时,则Δ=(2a)2-4·3a<0,解得0<a<3. 综上,实数a的取值范围是[0,3). 答案:[0,3) B级 能力提升练 11.(2018·山东济南模拟)已知实数a≠0,函数f(x)=若f(1-a)=f(1+a),则a的值为( ) A.- B.- C.-或- D.或- 解析:选B.当a>0时,1-a<1,1+a>1. 由f(1-a)=f(1+a)得2-2a+a=-1-a-2a,解得a=-,不合题意;当a<0时,1-a>1,1+a<1,由f(1-a)=f(1+a)得-1+a-2a=2+2a+a,解得a=-,所以a的值为-,故选B. 12.已知函数f(x)=的值域是[-8,1],则实数a的取值范围是( ) A.(-∞,-3] B.[-3,0) C.[-3,-1] D.{-3} 解析:选B.当0≤x≤4时,f(x)=-x2+2x=-(x-1)2+1,∴f(x)∈[-8,1];当a≤x<0时, f(x)=-为增函数,f(x)∈, 所以⊆[-8,1],-8≤-<-1, ∴≤2a<1. 即-3≤a<0. 13.(2018·陕西西安模拟)设函数y=f(x)在R上有定义,对于给定的正数M,定义函数fM(x)=则称函数fM(x)为f(x)的“孪生函数”.若给定函数f(x)=2-x2,M=1,则fM(0)的值为( ) A.2 B.1 C. D.- 解析:选B.由题意,令f(x)=2-x2=1,得x=±1,因此当x≤-1或x≥1时,x2≥1,-x2≤-1,∴2-x2≤1,fM(x)=2-x2;当-1<x<1时,x2<1,∴-x2>-1,∴2-x2>1,fM(x)=1,所以fM(0)=1,选B. 14.(2018·福州调研)设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围是( ) A. B.[0,1] C. D.[1,+∞) 解析:选C.当a=2时,f(2)=4,f(f(2))=f(4)=24, 显然f(f(2))=2f(2),故排除A,B. 当a=时,f=3×-1=1,f=f(1)=21=2.显然f=2f.故排除D.选C. 15.(2018·石家庄质检)已知函数f(x)=2x+1与函数y=g(x)的图象关于直线x=2成轴对称图形,则函数y=g(x)的解析式为________. 解析:设点M(x,y)为函数y=g(x)图象上的任意一点,点M′(x′,y′)是点M关于直线x=2的对称点,则又y′=2x′+1,∴y=2(4-x)+1=9-2x,即g(x)=9-2x. 答案:g(x)=9-2x 16.(2018·柳州模拟)设函数f(x)=若f(f(a))≤2,则实数a的取值范围是________. 解析:由题意得或解得f(a)≥-2. 由或 解得a≤. 答案:(-∞,]查看更多