【数学】2018届一轮复习人教A版第七章数列、推理与证明第1讲数列的概念及简单表示法学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2018届一轮复习人教A版第七章数列、推理与证明第1讲数列的概念及简单表示法学案

第1讲 数列的概念及简单表示法 最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类特殊函数.‎ 知 识 梳 理 ‎1.数列的概念 ‎(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.‎ ‎(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集)为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.‎ ‎(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法.‎ ‎2.数列的分类 分类原则 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限 按项与项间 的大小关系 分类 递增数列 an+1>an 其中 n∈N*‎ 递减数列 an+1<an 常数列 an+1=an 按其他标准分类 有界数列 存在正数M,使|an|≤M 摆动数列 从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列 ‎3.数列的两种常用的表示方法 ‎(1)通项公式:如果数列{an}的第n项an与序号n之间的关系可以用一个式子an=f(n)来表示,那么这个公式叫做这个数列的通项公式.‎ ‎(2)递推公式:如果已知数列{an}的第1项(或前几项),且从第二项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.‎ ‎4.已知数列{an}的前n项和Sn,则an= 诊 断 自 测 ‎1.判断正误(在括号内打“√”或“×”)‎ ‎(1)相同的一组数按不同顺序排列时都表示同一个数列.(  )‎ ‎(2)一个数列中的数是不可以重复的.(  )‎ ‎(3)所有数列的第n项都能使用公式表达.(  )‎ ‎(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.(  )‎ 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列.‎ ‎(2)数列中的数是可以重复的.‎ ‎(3)不是所有的数列都有通项公式.‎ 答案 (1)× (2)× (3)× (4)√‎ ‎2.(2017·浙江五校联考)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是(  )‎ A.an=(-1)n-1+1 B.an= C.an=2sin D.an=cos(n-1)π+1‎ 解析 对n=1,2,3,4进行验证,an=2sin不合题意,故选C.‎ 答案 C ‎3.设数列{an}的前n项和Sn=n2,则a8的值为(  )‎ A.15 B‎.16 ‎C.49 D.64‎ 解析 当n=8时,a8=S8-S7=82-72=15.‎ 答案 A ‎4.已知an=n2+λn,且对于任意的n∈N*,数列{an}是递增数列,则实数λ的取值范围是________.‎ 解析 因为{an}是递增数列,所以对任意的n∈N*,都有an+1>an,即(n+1)2+λ(n+1)>n2+λn,整理,‎ 得2n+1+λ>0,即λ>-(2n+1).(*)‎ 因为n≥1,所以-(2n+1)≤-3,要使不等式(*)恒成立,只需λ>-3.‎ 答案 (-3,+∞)‎ ‎5.(必修5P‎33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式an=________.‎ 答案 5n-4‎ ‎6.(2017·金华调考)在数列{xn}中,x1=10,xn=log2(xn-1-2),则数列{xn}的第2项是________,所有项和T=________.‎ 解析 ∵x1=10,xn=log2(xn-1-2),‎ ‎∴x2=log2(x1-2)=log28=3,x3=log2(x2-2)=log21=0.‎ 数列{xn}所有项的和为10+3+0=13.‎ 答案 3 13‎ 考点一 由数列的前几项求数列的通项 ‎【例1】 根据下面各数列前几项的值,写出数列的一个通项公式:‎ ‎(1)-1,7,-13,19,…;‎ ‎(2),,,,,…;‎ ‎(3),2,,8,,…;‎ ‎(4)5,55,555,5 555,….‎ 解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为an=(-1)n(6n-5).‎ ‎(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,…,相邻的偶数,故所求数列的一个通项公式为an=.‎ ‎(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即,,,,,…,分子为项数的平方,从而可得数列的一个通项公式为an=.‎ ‎(4)将原数列改写为×9,×99,×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为an=(10n-1).‎ 规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:‎ ‎(1)分式中分子、分母的各自特征;‎ ‎(2)相邻项的联系特征;‎ ‎(3)拆项后的各部分特征;‎ ‎(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.‎ ‎【训练1】 (1)数列0,,,,…的一个通项公式为(  )‎ A.an=(n∈N*) B.an=(n∈N*)‎ C.an=(n∈N*) D.an=(n∈N*)‎ ‎(2)数列-,,-,,…的一个通项公式an=________.‎ 解析 (1)注意到分子0,2,4,6都是偶数,对照选项排除即可.‎ ‎(2)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为an=(-1)n.‎ 答案 (1)C (2)(-1)n 考点二 由Sn与an的关系求an(易错警示)‎ ‎【例2】 (1)若数列{an}的前n项和Sn=3n2-2n+1,则数列{an}的通项公式an=________.‎ ‎(2)若数列{an}的前n项和Sn=an+,则{an}的通项公式an=________.‎ 解析 (1)当n=1时,a1=S1=3×12-2×1+1=2;‎ 当n≥2时,‎ an=Sn-Sn-1=3n2-2n+1-[3(n-1)2-2(n-1)+1]=6n-5,显然当n=1时,不满足上式.‎ 故数列的通项公式为an= ‎(2)由Sn=an+,得当n≥2时,Sn-1=an-1+,‎ 两式相减,得an=an-an-1,‎ ‎∴当n≥2时,an=-2an-1,即=-2.‎ 又n=1时,S1=a1=a1+,a1=1,‎ ‎∴an=(-2)n-1.‎ 答案 (1) (2)(-2)n-1‎ 规律方法 数列的通项an与前n项和Sn的关系是an=①当n=1时,a1若适合Sn-Sn-1,则n=1的情况可并入n≥2时的通项an;②当n=1时,a1若不适合Sn-Sn-1,则用分段函数的形式表示.‎ 易错警示 在利用数列的前n项和求通项时,往往容易忽略先求出a1,而是直接把数列的通项公式写成an=Sn-Sn-1的形式,但它只适用于n≥2的情形.‎ ‎【训练2】 (1)(2017·温州市十校联考)在数列{an}中,Sn是其前n项和,且Sn=2an+1,则数列的通项公式an=________.‎ ‎(2)已知数列{an}的前n项和Sn=3n+1,则数列的通项公式an=________.‎ 解析 (1)依题意得Sn+1=2an+1+1,Sn=2an+1,两式相减得Sn+1-Sn=2an+1-2an,即an+1=2an,又S1=‎2a1+1=a1,因此a1=-1,所以数列{an}是以a1=-1为首项、2为公比的等比数列,an=-2n-1.‎ ‎(2)当n=1时,a1=S1=3+1=4,‎ 当n≥2时,an=Sn-Sn-1=3n+1-3n-1-1=2·3n-1.‎ 显然当n=1时,不满足上式.‎ ‎∴an= 答案 (1)-2n-1 (2) 考点三 由数列的递推关系求通项公式 ‎【例3】 在数列{an}中,‎ ‎(1)若a1=2,an+1=an+n+1,则通项公式an=________.‎ ‎(2)若a1=1,an=an-1(n≥2),则通项公式an=________.‎ ‎(3)若a1=1,an+1=2an+3,则通项公式an=________.‎ 解析 (1)由题意得,当n≥2时,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+(2+3+…+n)=2+=+1.又a1=2=+1,符合上式,因此an=+1.‎ ‎(2)法一 因为an=an-1(n≥2),所以an-1=·an-2,…,a2=a1,以上(n-1)个式子的等号两端分别相乘得an=a1···…·==.‎ 法二 因为an=···…···a1=···…·1=.‎ ‎(3)设递推公式an+1=2an+3可以转化为an+1+t=2(an+t),即an+1=2an+t,解得t=3.‎ 故an+1+3=2(an+3).‎ 令bn=an+3,则b1=a1+3=4,且==2.‎ 所以{bn}是以4为首项,2为公比的等比数列.‎ ‎∴bn=4·2n-1=2n+1,∴an=2n+1-3.‎ 答案 (1)+1 (2) (3)2n+1-3‎ 规律方法 (1)形如an+1=an+f(n)的递推关系式利用累加法求和,特别注意能消去多少项,保留多少项.‎ ‎(2)形如an+1=an·f(n)的递推关系式可化为=f(n)的形式,可用累乘法,也可用an=··…··a1代入求出通项.‎ ‎(3)形如an+1=pan+q的递推关系式可以化为(an+1+x)=p(an+x)的形式,构成新的等比数列,求出通项公式,求变量x是关键.‎ ‎【训练3】 (1)已知数列{an}满足a1=1,a2=4,an+2+2an=3an+1(n∈N*),则数列{an}的通项公式an=________.‎ ‎(2)在数列{an}中,a1=3,an+1=an+,则通项公式an=________.‎ 解析 (1)由an+2+2an-3an+1=0,‎ 得an+2-an+1=2(an+1-an),‎ ‎∴数列{an+1-an}是以a2-a1=3为首项,2为公比的等比数列,∴an+1-an=3×2n-1,‎ ‎∴n≥2时,an-an-1=3×2n-2,…,a3-a2=3×2,a2-a1=3,‎ 将以上各式累加得 an-a1=3×2n-2+…+3×2+3=3(2n-1-1),‎ ‎∴an=3×2n-1-2(当n=1时,也满足).‎ ‎(2)原递推公式可化为an+1=an+-,‎ 则a2=a1+-,a3=a2+-,‎ a4=a3+-,…,an-1=an-2+-,‎ an=an-1+-,‎ 逐项相加得,an=a1+1-,故an=4-.‎ 答案 (1)3×2n-1-2 (2)4- ‎[思想方法]‎ ‎1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n或(-1)n+1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.‎ ‎2.强调an与Sn的关系:an= ‎3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:‎ ‎(1)算出前几项,再归纳、猜想;‎ ‎(2)利用累加或累乘法求数列的通项公式.‎ ‎[易错防范]‎ ‎1.数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列an=f(n)和函数y=f(x)的单调性是不同的.‎ ‎2.数列的通项公式不一定唯一. ‎
查看更多

相关文章

您可能关注的文档