- 2021-05-20 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教版(理)第9章第1讲随机抽样学案
第1讲 随机抽样 [考纲解读] 1.理解随机抽样的必要性和重要性,会用简单随机抽样方法从总体中抽取样本. 2.了解分层抽样与系统抽样的意义,能利用分层抽样与系统抽样解决实际问题.(重点) [考向预测] 从近三年高考情况来看,本讲内容为高考中的冷考点.预测2020年高考对本考点将会考查以实际应用为背景命题考查分层抽样或系统抽样,同时也可能与统计相结合命题.试题以客观题的形式呈现,难度不大,以中、低档题目为主. 1.简单随机抽样 (1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样 (1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样. (2)系统抽样的操作步骤 假设要从容量为N的总体中抽取容量为n的样本. ①先将总体的N个个体编号; ②确定分段间隔k,对编号进行分段,当(n是样本容量)是整数时,取k=;当不是整数时,可随机地从总体中剔除余数x,取k=; ③在第1段用简单随机抽样确定第一个个体编号l(l≤k); ④按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本. 3.分层抽样 (1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样. (2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样. 注:三种抽样方法的比较 1.概念辨析 (1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( ) (2)系统抽样在起始部分抽样时采用简单随机抽样.( ) (3)分层抽样是将每层各抽取相同的个体数构成样本,分层抽样为保证各个个体等可能入样,必须进行每层等可能抽样.( ) (4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( ) 答案 (1)× (2)√ (3)× (4)× 2.小题热身 (1)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是( ) A.总体 B.个体 C.样本容量 D.从总体中抽取的一个样本 答案 A 解析 从5000名居民某天的阅读时间中抽取200名居民的阅读时间,样本容量是200,抽取的200名居民的阅读时间是一个样本,每名居民的阅读时间就是一个个体,5000名居民的阅读时间的全体是总体. (2)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A.50 B.40 C.25 D.20 答案 C 解析 由已知得,分段的间隔为=25. (3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( ) A.p1=p2查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档