- 2021-05-20 发布 |
- 37.5 KB |
- 31页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【生物】2019届一轮复习人教版第21讲染色体变异与育种学案
第21讲 染色体变异与育种 [考纲要求] 1.染色体结构变异和数目变异(Ⅱ)。2.生物变异在育种上的应用(Ⅱ)。3.转基因食品的安全(Ⅰ)。4.实验:低温诱导染色体加倍。 考点一 染色体变异 1.染色体结构的变异 (1)类型(连线) (2)结果:使排列在染色体上的基因的数目或排列顺序发生改变,从而导致性状的变异。 2.染色体数目变异 (1)类型 (2)染色体组(根据果蝇染色体组成图归纳) ①从染色体来源看,一个染色体组中不含同源染色体。 ②从形态、大小和功能看,一个染色体组中所含的染色体各不相同。 ③从所含的基因看,一个染色体组中含有控制本物种生物性状的一整套基因,但不能重复。 (3)单倍体、二倍体和多倍体 项目 单倍体 二倍体 多倍体 概念 体细胞中含有本物种配子染色体数目的个体 体细胞中含有两个染色体组的个体 体细胞中含有三个或三个以上染色体组的个体 发育起点 配子 受精卵 受精卵 植株特点 (1)植株弱小 (2)高度不育 正常可育 (1)茎秆粗壮 (2)叶片、果实和种子较大 (3)营养物质含量丰富 体细胞染 色体组数 ≥1 2 ≥3 形成 过程 雄配子单倍体 + 雌配子单倍体 ↓受精作用 受精卵生物体 形成原因 自然原因 单性生殖 正常的有性生殖 外界环境条件剧变(如低温) 人工 诱导 花药离体培养 秋水仙素处理单倍体幼苗 秋水仙素处理萌发的种子或幼苗 举例 蜜蜂的雄蜂 几乎全部的动物和过半数的高等植物 香蕉(三倍体);马铃薯(四倍体);八倍体小黑麦 1.判断下列有关染色体结构变异的叙述 (1)染色体增加某一片段可提高基因表达水平,是有利变异( × ) (2)染色体缺失有利于隐性基因表达,可提高个体的生存能力( × ) (3)染色体易位不改变基因数量,对个体性状不会产生影响( × ) (4)染色体上某个基因的丢失属于基因突变( × ) (5)DNA分子中发生三个碱基对的缺失导致染色体结构变异( × ) (6)非同源染色体某片段移接,仅发生在减数分裂过程中( × ) 2.判断下列有关染色体数目变异的叙述 (1)三倍体西瓜植株的高度不育与减数分裂同源染色体联会行为有关( √ ) (2)用秋水仙素处理某高等植物连续分裂的细胞群体,分裂期细胞的比例会减少( × ) (3)染色体组整倍性变化必然导致基因种类的增加( × ) (4)体细胞中含有两个染色体组的个体是二倍体,含有三个或三个以上染色体组的个体是多倍体( × ) (5)水稻(2n=24)一个染色体组有12条染色体,水稻单倍体基因组有12条染色体( √ ) (6)用秋水仙素处理单倍体植株后得到的一定是二倍体( × ) (7)单倍体含有的染色体组数都是奇数( × ) 分析染色体的结构变异和数目变异 (1)图甲①~④的结果中哪些是由染色体变异引起的?它们分别属于哪类变异?能在光学显微镜下观察到的是哪几个?哪类变异没有改变染色体上基因的数量和排列顺序? 提示 ①染色体片段缺失;②染色体片段易位;③基因突变;④染色体片段倒位。①②④均为染色体变异,可在光学显微镜下观察到,③为基因突变,不能在光学显微镜下观察到。③(基因突变)只是产生了新基因,染色体上基因的数量和排列顺序均未发生改变。 (2)图乙、丙均发生了某些片段的交换,其交换对象分别是什么?它们属于哪类变异? 提示 图乙发生了非同源染色体间片段的交换,图丙发生的是同源染色体上的非姐妹染色单体间相应片段的交换;前者属于染色体结构变异中的“易位”,后者属于交叉互换型基因重组。 (3)上述的染色体结构变异中有的甚至导致生物体死亡,为何还称为可遗传的变异? 提示 染色体结构变异使排列在染色体上的基因的数目或排列顺序发生改变,即由遗传物质的变化引起的变异就称为可遗传的变异。 (4)下图中丁是某二倍体生物体细胞染色体模式图,戊、己、庚是发生变异后的不同个体的体细胞中的染色体组成模式图,据图回答: ①若果蝇的某细胞在减数第一次分裂后期X染色体和Y染色体没有分离,最终形成的精子中含有的是不是一个染色体组?不是。 ②上图中戊所示个体减数分裂产生的配子种类及比例如何?图己所示个体在减数分裂联会时,3条同源染色体中的任意2条配对联会,另1条同源染色体不能配对,减数第一次分裂的后期配对的同源染色体正常分离,而不能配对的1条染色体随机移向细胞的任意一极,则其减数分裂时可产生的配子种类和比例如何? 提示 b∶B∶ab∶aB=1∶1∶1∶1;aB∶ab∶AB∶Ab∶AaB∶Aab∶AAB∶AAb=1∶1∶2∶2∶2∶2∶1∶1。 ③读上图辨析“三体”=“三倍体”吗? 提示 三体是二倍体(含两个染色体组),只是其中某形态的染色体“多出了一条”,其余染色体均为两两相同(如上图己);三倍体则是指由受精卵发育而来的体细胞中含三个染色体组的个体,其每种形态的染色体为“三三相同”(如图庚)。 命题点一 透过图像辨析三种可遗传变异 1.(2018·贵阳调研)下图中,甲、乙分别表示两种果蝇的一个染色体组,丙表示果蝇的X染色体及其携带的部分基因。下列有关叙述正确的是( ) A.甲、乙杂交产生的F1减数分裂都正常 B.甲、乙1号染色体上的基因排列顺序相同 C.丙中①过程,可能是发生在X和Y的非姐妹染色单体之间的易位 D.丙中①②所示变异都可归类于染色体结构变异 答案 D 解析 与甲相比,乙中的1号染色体发生了倒位,所以甲、乙杂交产生的F1,减数分裂过程中1号染色体不能正常联会,不能产生正常配子,A项错误;因为乙中的1号染色体发生了倒位,所以甲、乙的1号染色体上的基因排列顺序不完全相同,B项错误;丙中①过程基因的位置发生颠倒,属于倒位,丙中②过程染色体片段发生改变,属于染色体结构变异中的易位,①②都属于染色体结构变异,C项错误,D项正确。 2.如图①②③④分别表示不同的变异类型,a、a′基因仅有图③所示片段的差异。下列相关叙述正确的是( ) A.图中4种变异中能够遗传的变异是①②④ B.③中的变异属于染色体结构变异中的缺失 C.④中的变异可能是染色体结构变异中的缺失或重复 D.①②都表示同源染色体非姐妹染色单体的交叉互换,发生在减数第一次分裂的前期 答案 C 解析 ①表示同源染色体上的非姐妹染色单体之间的交叉互换(发生在减数第一次分裂前期),导致基因重组;②表示非同源染色体互换片段,发生的是染色体结构变异中的易位;③表示基因突变;④表示染色体结构变异中的某一片段缺失或重复。 利用四个“关于”区分三种变异 (1)关于“互换”:同源染色体上的非姐妹染色单体之间的交叉互换,属于基因重组;非同源染色体之间的互换,属于染色体结构变异中的易位。 (2)关于“缺失或增加”:DNA分子上若干基因的缺失或重复(增加),属于染色体结构变异;DNA分子上若干碱基对的缺失、增添,属于基因突变。 (3)关于变异的水平:基因突变、基因重组属于分子水平的变化,在光学显微镜下观察不到;染色体变异属于细胞水平的变化,在光学显微镜下可以观察到。 (4)关于变异的“质”和“量”:基因突变改变基因的质,不改变基因的量;基因重组不改变基因的质,一般不改变基因的量,转基因技术会改变基因的量;染色体变异不改变基因的质,会改变基因的量或基因的排列顺序。 命题点二 染色体组及生物体倍性的判断 3.下列是对a~h所示的生物体细胞图中各含有几个染色体组的叙述,正确的是( ) A.细胞中含有一个染色体组的是h图,该个体是单倍体 B.细胞中含有两个染色体组的是e、g图,该个体是二倍体 C.细胞中含有三个染色体组的是a、b图,但该个体未必是三倍体 D.细胞中含有四个染色体组的是c、f图,该个体一定是四倍体 答案 C 解析 形态、大小各不相同的染色体组成一个染色体组,由此我们可知:a、b图含有三个染色体组,c、h图含有两个染色体组,d、g图含有一个染色体组,e、f图含有四个染色体组。确认单倍体、二倍体、三倍体必须先看发育起点:若由配子发育而来,无论含几个染色体组均属于单倍体;若由受精卵发育而来,有几个染色体组即属于几倍体。 4.下图所示细胞中对所含染色体的有关叙述正确的是( ) A.图a含有2个染色体组,图b含有3个染色体组 B.如果图b表示体细胞,则图b代表的生物一定是三倍体 C.如果图c代表由受精卵发育成的生物的体细胞,则该生物一定是二倍体 D.图d代表的生物一定是由卵细胞发育而成的,是单倍体 答案 C 解析 图a为有丝分裂后期,含有4个染色体组,图b有3个染色体组,A项错误;如果图b生物是由配子发育而成的,则图b代表的生物是单倍体,如果图b生物是由受精卵发育而成的,则图b代表的生物是三倍体,B项错误;图c中有同源染色体,含有2个染色体组,若是由受精卵发育而成的,则该细胞所代表的生物一定是二倍体,C项正确;图d中只含1个染色体组,一定是单倍体,可能是由雄配子或雌配子发育而成的,D项错误。 1.三种方法确定染色体组数量 (1)染色体形态法 同一形态的染色体→有几条就有几组。如图中有4个染色体组。 (2)等位基因个数法 控制同一性状的等位基因→有几个就有几组。如AAabbb个体中有3个染色体组。 (3)公式法 染色体组数=,如图中有4个染色体组。 2.“两看法”判断单倍体、二倍体和多倍体 命题点三 变异类型的实验探究 5.玉米的紫株和绿株由6号染色体上一对等位基因(H、h)控制,紫株对绿株为显性。紫株A经X射线照射后再与绿株杂交,子代出现少数绿株(绿株B)。为研究绿株B出现的原因,让绿株B与正常纯合的紫株C杂交得F1,F1自交得F2。请回答: (1)假设一:X射线照射导致紫株A发生了基因突变。若此假设成立,则F1的基因型为__________;F2中紫株所占的比例为________。 (2)假设二:X射线照射导致紫株A的6号染色体断裂,含有基因H的片段缺失(注:一条染色体部分片段缺失的个体生存,两条同源染色体皆有相同部分片段缺失的个体死亡)。若此假设成立,则绿株B产生的雌雄配子各有____种,F1的表现型____________;F2中,紫株∶绿株=________。 (3)为验证假设二是否正确。最好选择________(填“紫株A”“绿株B”或“紫株C”)的根尖制成装片,在显微镜下观察和比较________________________________(填分裂方式及分裂时期)的染色体形态。 答案 (1)Hh (2)2 全部为紫株 6∶1 (3)绿株B 有丝分裂中期 解析 (1)假设一是基因突变,基因突变是指DNA分子中碱基对的增添、缺失和替换等,其实质是基因结构的改变。紫株A变异后与绿株(hh)杂交,后代有绿株出现,说明紫株A的基因型为Hh,绿株B的基因型为hh。绿株B(hh)与正常纯合的紫株C(HH)杂交,F1的基因型为Hh;F1自交得到F2,F2中紫株(H_)所占的比例应为。 (2)假设二是染色体变异,则绿株B的基因型为hO,即绿株B的一条染色体缺失含有基因H的片段,因此其能产生2种配子,一种配子含有基因h,另一种配子6号染色体断裂缺失含H的片段。绿株B与正常纯合的紫株C(HH)杂交,F1有两种基因型(比例相等):Hh和HO,均表现为紫株;Hh自交得到的F2为HH∶Hh∶hh=1∶2∶1,紫株占,绿株占,HO自交,由于两条染色体缺失相同片段的个体死亡,所以F2为HH∶HO=1∶2,全为紫株,F2中紫株所占比例应为,绿株所占比例应为。所以,紫株∶绿株=6∶1。 (3)基因突变是点突变,在显微镜下无法观察到,而染色体变异可在显微镜下观察到,所以假设二可以通过细胞学的方法来验证,即在显微镜下观察绿株B细胞有丝分裂或减数分裂过程中的染色体。根尖部位只能发生有丝分裂,故应选择有丝分裂中期的细胞进行观察,因为此时染色体的形态和数目最清晰,然后可以通过染色体组型分析比较6号染色体是否相同。 6.番茄是二倍体植物。有一种三体,其6号染色体的同源染色体有3条,在减数分裂联会时,3条同源染色体中的任意2条随意配对联会形成一个二价体,另1条同源染色体不能配对而形成一个单价体。减数第一次分裂的后期,组成二价体的同源染色体正常分离,组成单价体的1条染色体随机地移向细胞的任何一极,而其他染色体正常配对、分离。请回答问题: (1)从变异类型的角度分析,三体的形成属于________________________。 (2)若三体番茄的基因型为AABBb,则其产生的花粉的基因型及其比例为______________________________,其根尖分生区一细胞连续分裂两次所得到的子细胞的基因型为__________。 (3)现以马铃薯叶型(dd)的二倍体番茄为父本,以正常叶型(DD或DDD)的三体纯合子番茄为母本,设计杂交实验,判断D(或d)基因是否在第6号染色体上,最简单可行的实验方案是______________________________________________________________________________。 实验结果: ①若杂交子代___________________________________,则______________________。 ②若杂交子代___________________________________,则______________________。 答案 (1)染色体数目变异 (2)ABB∶ABb∶AB∶Ab=1∶2∶2∶1 AABBb (3)F1的三体植株正常叶型与二倍体马铃薯叶型杂交 ①正常叶∶马铃薯叶=1∶1 D(或d)基因不在第6号染色体上 ②正常叶∶马铃薯叶=5∶1 D(或d)基因在第6号染色体上 解析 (1)由题意知,正常番茄中体细胞的6号染色体是2条,三体的6号染色体是3条,属于染色体数目变异。(2)三体番茄的基因型为AABBb,依题意分析其产生的配子的基因型及比例是ABB∶ABb∶AB∶Ab=1∶2∶2∶1;根尖细胞进行有丝分裂,分裂后形成的子细胞的基因型与亲代细胞相同,都是AABBb。(3)①如果D(d)基因不在6号染色体上,则马铃薯叶型的基因型是dd,正常叶型的基因型是DD,杂交子代的基因型是Dd,与dd进行测交,测交后代的基因型及比例是Dd∶dd=1∶1,前者是正常叶,后者是马铃薯叶;②如果D(d)基因位于6号染色体上,则马铃薯叶型的基因型是dd,正常叶型的基因型是DDD,杂交子代的基因型是Dd、DDd, 其中DDd是三体植株,DDd与dd进行测交,DDd产生的配子的基因型及比例是DD∶D∶Dd∶d=1∶2∶2∶1,测交后代的基因型是DDd∶Dd∶Ddd∶dd=1∶2∶2∶1,其中Dd、DDd、Ddd表现为正常叶,dd表现为马铃薯叶。 考点二 生物变异在育种上的应用 1.单倍体育种 (1)原理:染色体(数目)变异。 (2)方法 (3)优点:明显缩短育种年限,所得个体均为纯合子。 (4)缺点:技术复杂。 2.多倍体育种 (1)方法:用秋水仙素或低温处理。 (2)处理材料:萌发的种子或幼苗。 (3)原理 (4)实例:三倍体无子西瓜 ①两次传粉 ②三倍体西瓜无子的原因:三倍体西瓜在减数分裂过程中,由于染色体联会紊乱,不能产生正常配子。 3.杂交育种 (1)原理:基因重组。 (2)过程 ①培育杂合子品种 选取符合要求的纯种双亲杂交(♀×♂)→F1(即为所需品种)。 ②培育隐性纯合子品种 选取符合要求的双亲杂交(♀×♂)→F1F2→选出表现型符合要求的个体种植并推广。 ③培育显性纯合子品种 a.植物:选择具有不同优良性状的亲本杂交,获得F1→F1自交→获得F2→鉴别、选择需要的类型,自交至不发生性状分离为止。 b.动物:选择具有不同优良性状的亲本杂交,获得F1→F1雌雄个体交配→获得F2→鉴别、选择需要的类型与隐性类型测交,选择后代不发生性状分离的F2个体。 (3)优点:操作简便,可以把多个品种的优良性状集中在一起。 (4)缺点:获得新品种的周期长。 4.诱变育种 (1)原理:基因突变。 (2)过程 (3)优点 ①可以提高突变频率,在较短时间内获得更多的优良变异类型。 ②大幅度地改良某些性状。 (4)缺点:有利变异个体往往不多,需要处理大量材料。 归纳总结 根据育种程序图识别育种名称和过程 (1)首先要识别图解中各字母表示的处理方法:A——杂交,D——自交,B——花药离体培养,C——秋水仙素处理,E——诱变处理,F——秋水仙素处理,G——转基因技术,H——脱分化,I——再分化,J——包裹人工种皮。这是识别各种育种方法的主要依据。 (2)根据以上分析可以判断:“亲本新品种”为杂交育种,“亲本新品种”为单倍体育种,“种子或幼苗新品种”为诱变育种,“种子或幼苗新品种”为多倍体育种,“植物细胞新细胞愈伤组织胚状体人工种子―→新品种”为基因工程育种。 (1)抗虫小麦与矮秆小麦杂交,通过基因重组可获得抗虫矮秆小麦( √ ) (2)抗病植株连续自交若干代,纯合抗病植株的比例逐代降低( × ) (3)通过花药离体培养可获得抗锈病高产小麦新品种( × ) (4)诱变育种和杂交育种均可形成新基因( × ) (5)利用高产、感病小麦与高产、晚熟小麦品种间杂交筛选可获得高产、抗病小麦的品种 ( × ) (6)单倍体育种中,通过花药离体培养所得的植株均为纯合的二倍体( × ) (7)已知a和b基因为优良基因,并分别独立控制不同的优良性状。欲利用现有的基因型为AABB、AAbb、aaBB三种纯合子,较简单快捷的培育出优良新品种的方法是杂交育种( √ ) (8)诱变育种可通过改变基因的结构达到育种目的( √ ) (9)现有三个番茄品种,A种的基因型为aaBBDD,B种的基因型为AAbbDD,C种的基因型为AABBdd,三种等位基因分别位于三对同源染色体上。若通过杂交育种获得aabbdd植株,且每年只繁殖一代,至少需要的时间为4年( √ ) (10)用二倍体西瓜给四倍体西瓜授粉,则四倍体植株上会结出三倍体无子西瓜( × ) 图中甲、乙表示水稻两个品种,A、a和B、b分别表示位于两对同源染色体上的两对等位基因,①~⑥表示培育水稻新品种的过程,请分析: (1)图中哪种途径为单倍体育种?其为什么能缩短育种年限? 提示 图中①③⑤过程表示单倍体育种。采用花药离体培养获得的单倍体植株,经人工诱导染色体加倍后,植株细胞内每对染色体上的基因都是纯合的,自交后代不会发生性状分离,因此缩短了育种年限。 (2)图中哪一标号处需用秋水仙素处理?应如何处理? 提示 图示⑤处需用秋水仙素处理单倍体幼苗,从而获得纯合子;⑥处常用秋水仙素处理萌发的种子或幼苗,以诱导染色体加倍。 (3)④⑥的育种原理分别是什么? 提示 ④的育种原理为基因突变,⑥的育种原理为染色体变异。 (4)图中最简便及最难以达到育种目标的育种途径分别是哪个过程? 提示 图中最简便的育种途径为①②过程所示的杂交育种,但育种周期较长;最难以达到育种目标的途径为④过程。 (5)杂交育种选育从F2开始的原因是什么?其实践过程中一定需要连续自交吗?为什么? 提示 因为从F2开始发生性状分离。不一定需要连续自交。若选育显性优良纯种,需要连续自交筛选直至性状不再发生分离;若选育隐性优良纯种,则只要在F2出现该性状个体即可。 (6)原核生物常选哪种育种方式,为什么? 提示 诱变育种。原核生物无减数分裂,不能进行杂交育种,所以一般选诱变育种。 (7)大幅度改良某一品种,使之出现前所未有的性状,如何设计育种方案? 提示 大幅度改良某一品种,使之出现前所未有的性状需采用诱变育种。 命题点一 分析单倍体育种与多倍体育种的应用 1.如图是利用野生猕猴桃种子(aa,2n=58)为材料培育无子猕猴桃新品种(AAA)的过程,下列叙述错误的是( ) A.③和⑥都可用秋水仙素处理来实现 B.若④是自交,则产生AAAA的概率为 1/16 C.AA植株和AAAA植株是不同的物种 D.若⑤是杂交,产生的AAA植株的体细胞中染色体数目为87 答案 B 解析 ③和⑥都可用秋水仙素处理来完成染色体数目加倍,A项正确;植株AAaa减数分裂产生的配子种类及比例为AA∶Aa∶aa=1∶4∶1,所以AAaa自交产生AAAA的概率=1/6×1/6=1/36,B项错误;二倍体AA与四倍体AAAA杂交产生的AAA为不育的三倍体,因此AA植株和AAAA植株是不同的物种,C项正确;该生物一个染色体组含有染色体58÷2=29(条),所以三倍体植株体细胞中染色体数为29×3=87(条),D项正确。 2.萝卜和甘蓝都是人们喜欢的蔬菜,并且萝卜和甘蓝都属于十字花科植物且都是二倍体生物,体细胞染色体数都是18。萝卜的染色体组成和染色体数可以表示为:2n=AA=18,甘蓝的染色体组成和染色体数可以表示为:2n=BB=18。如图是利用萝卜和甘蓝培育作物品种的过程示意图,请回答下列问题: (1)图中秋水仙素的作用是________________,作用的时期是________________;与用秋水仙素处理可以达到同样效果的一种措施是________________。 (2)以上育种方法的原理是________________;甲、乙、丙、丁4种植株中,可育的有__________,其染色体组成和染色体数分别为________________________________________________。植株丁根尖分生区的一个细胞中最多含______________条染色体。 (3)基因型为AaBb的萝卜和基因型为DdEe的甘蓝杂交,后代基因型有________________种;请设计一个利用基因型为AaBb的萝卜和基因型为DdEe的甘蓝,获得基因型为 aaaabbbbddee的萝卜—甘蓝新品种的培育步骤(写出一种即可)。 答案 (1)抑制纺锤体形成 有丝分裂前期 低温处理 (2)染色体变异 甲、丙 甲:4n=AAAA=36,丙:4n=AABB=36 54 (3)16 用AaBb的萝卜自交,获得基因型为aabb的个体,诱导加倍获得基因型为aaaabbbb的个体,再诱导加倍获得基因型为aaaaaaaabbbbbbbb的个体;用基因型为DdEe的个体自交获得基因型为ddee的个体,对其诱导加倍获得基因型为ddddeeee的个体;让基因型为aaaaaaaabbbbbbbb的萝卜与基因型为ddddeeee的甘蓝杂交,获得的后代即为基因型为aaaabbbbddee的萝卜—甘蓝新品种(答案合理即可)。 解析 (1)秋水仙素的作用是抑制纺锤体形成,作用的时期是有丝分裂前期。与用秋水仙素处理可以达到同样效果的是低温处理,低温处理同样可以诱导多倍体产生。(2)植株甲的获取原理是染色体组加倍,为同源四倍体,可育;植株乙是通过杂交获得的异源二倍体,不可育;植株丙获取的原理是染色体组加倍,为异源四倍体,可育;植株丁是通过杂交获得的异源三倍体,不可育。甲的染色体组成和染色体数为:4n=AAAA=36;乙的染色体组成和染色体数为:2n=AB=18;丙的染色体组成和染色体数为:4n=AABB=36;丁的染色体组成和染色体数为:3n=AAB=27。植株丁根尖分生区的一个细胞中最多含染色体数为27×2=54条。(3)基因型为AaBb的萝卜和基因型为DdEe的甘蓝各产生4种互不相同的配子,随机组合可产生4×4=16种基因型的后代。获取基因型为aaaabbbbddee的萝卜—甘蓝新品种的方法有多种,详见答案。 单倍体育种与杂交育种的关系 命题点二 分析诱变育种和杂交育种的应用 3.家蚕(2n=28)雌性体细胞内有两个异型的性染色体ZW,雄性体细胞内有两个同型的性染色体ZZ。人们用辐射的方法使常染色体上带有卵色基因的片段易位到W染色体上,使ZW卵和不带卵色基因的ZZ卵有所区别,从而在家蚕卵还未孵化时就能区分雌雄。下列有关说法错误的是( ) A.这种育种方式属于诱变育种 B.辐射的目的是为了提高基因的突变率,更容易筛选到卵色基因 C.上述带有卵色的受精卵将来会发育为雌性家蚕 D.上述带有卵色基因的家蚕染色体组型图与正常家蚕不同 答案 B 解析 人们用辐射的方法使常染色体上带有卵色基因的片段易位到W染色体上,说明该方法是诱变育种,A项正确;辐射的目的是为了使常染色体上带有卵色基因的片段易位到W染色体上,使家蚕卵还未孵化时就能区分雌雄,B项错误;根据题意可知,卵色基因的片段易位到W染色体上,则带有卵色的受精卵为ZW,为雌性家蚕,C项正确;上述带有卵色基因的家蚕W染色体多了一段染色体,所以其染色体组型图与正常家蚕不同,D项正确。 4.玉米长果穗(H)对短果穗(h)为显性,黄粒(F)对白粒(f)为显性,两对基因独立遗传。现有甲(HHFF)、乙(hhFF)、丙(HHff)三个品系的纯种玉米。请回答问题: (1)将甲与短果穗白粒植株杂交得F1,F1再与某植株杂交,后代的表现型及比例为长果穗黄粒∶短果穗黄粒=3∶1,那么某植株的基因型是____________。 (2)为提高产量,在生产中使用的玉米种子都是杂交种。现有长果穗白粒和短果穗黄粒两个玉米杂合子品种,为了达到长期培育长果穗黄粒(HhFf)玉米杂交种的目的,科研人员设计了如图的快速育种方案。 图中的处理方法A和B分别是指__________________、____________________。以上育种过程中所依据的两个遗传学原理是________________________________________________。 答案 (1)HhFF (2)花药离体培养 秋水仙素处理 基因重组、染色体变异 解析 (1)纯种长果穗黄粒与短果穗白粒玉米杂交得F1 ,F1基因型为HhFf,F1与某品种杂交,后代的表现型及比例为长果穗黄粒∶短果穗黄粒=3∶1,所以该品种为HhFF。(2)图中的处理方法A和B分别是指花药离体培养、秋水仙素处理。以上育种过程中所依据的两个遗传学原理是基因重组、染色体变异。 5.在家兔中黑毛(B)对褐毛(b)是显性,短毛(E)对长毛(e)是显性,遵循基因的自由组合定律。现有纯合黑色短毛兔,褐色长毛兔,褐色短毛兔三个品种。请回答: (1)设计培育出能稳定遗传的黑色长毛兔的育种方案简要程序: 第一步:让基因型为__________的兔子和基因型为________________的异性兔子杂交,得到F1。 第二步:让F1____________________________________,得到F2。 第三步:选出F2中表现型为黑色长毛兔的个体,让它们各自与表现型为__________的异性兔杂交,分别观察每对兔子产生的子代,若后代足够多且________________________,则该F2中的黑色长毛兔即为能稳定遗传的黑色长毛兔。 (2)该育种方案原理是______________________。 (3)在上述方案的第三步能否改为让F2中表现型为黑色长毛的雌雄兔子两两相互交配,若两只兔子所产生的子代均为黑色长毛,则这两只兔子就是能稳定遗传的黑色长毛兔?为什么?____________(填“能”或“不能”),原因是_________________________________________ ________________________________________________________________________。 答案 (1)BBEE bbee 雌雄个体相互交配 褐色长毛兔(或褐色短毛兔) 不出现性状分离 (2)基因重组 (3)不能 两只黑色长毛的雌雄兔子交配,所产生的子代均为黑色长毛,只能说明这两只黑色长毛兔中至少有一只是能稳定遗传的 解析 (1)要想获得BBee,应选择黑色短毛兔(BBEE)和褐色长毛兔(bbee)作为亲本杂交,但是获得的子一代全为杂合子,因此必须让子一代个体之间相互交配,在子二代中选择出黑色长毛兔,然后再通过测交的方法选择出后代不发生性状分离的即可。(2)杂交育种的原理为基因重组。(3)黑色长毛兔的基因型为B_ee,如果让黑色长毛的雌雄兔子两两相互交配,若所产生的子代均为黑色长毛,只能说明这两只黑色长毛兔中至少有一只能稳定遗传,并不能确定这两只兔子就是能稳定遗传的黑色长毛兔。 命题点三 生物育种的综合判断 6.如图所示,将二倍体植株①和②杂交得到③,再将③作进一步处理。对此分析错误的是( ) A.由⑤得到⑥的育种原理是基因重组 B.图中秋水仙素的作用是使染色体数目加倍 C.若③的基因型是AaBbdd,则⑨的基因型可能是aBd D.③至④的过程中,所产生的变异都有利于生产 答案 D 解析 ①和②杂交后得到③,③应为种子,多次射线处理萌发的种子应为诱变育种,由于突变是不定向的,所以产生的性状可能是有利的也可能是有害的;⑤到⑥的过程表示杂交育种,遵循的原理为基因重组;由③到⑨是花药离体培养,所得到的幼苗是单倍体,可以有aBd、abd、ABd、Abd四种基因型;秋水仙素的作用是抑制纺锤体的形成,进而使染色体数目加倍。 7.(2017·石嘴山第三中学一模)野生香蕉是二倍体,通常有大量的硬子,无法食用。在大约1万年前的东南亚,人们发现一种很少见的香蕉品种,这种香蕉无子、可食,是世界上第一种可食用的香蕉,后来人们发现这种无子香蕉是三倍体。请回答问题: (1)三倍体香蕉的变异属于____________________,之所以无子是因为此香蕉在减数分裂时________________________,不能产生正常配子。 (2)由一种变异的致命真菌引起的香蕉叶斑病正在全球蔓延。在世界许多香蕉农场,每年多次、 大量喷洒杀菌剂来抑制这种真菌的散播,但此做法未能起到较好的效果。此杀菌剂的使用对真菌起到了______作用。 (3)生物学家到目前仍然没有找到携带该真菌抗性基因的二倍体野生香蕉,说明基因突变具有________________________的特点。如果找到具有抗真菌基因的二倍体野生香蕉,可以尝试用__________育种方式,以获得________倍体香蕉作母本,然后与________倍体野生香蕉作父本杂交,从其后代的三倍体无子香蕉中选育出抗病的品种。 答案 (1)染色体(数目)变异 同源染色体联会紊乱 (2)选择 (3)不定向性或低频性 多倍体 四 二 解析 (1)三倍体香蕉的变异属于染色体(数目)变异,三倍体香蕉因在减数分裂时同源染色体联会紊乱,不能产生正常的配子,所以三倍体香蕉无子。(2)杀菌剂的使用对真菌的不定向变异起到了定向的选择作用。(3)由题干中“生物学家到目前仍然没有找到携带该真菌抗性基因的二倍体野生香蕉”可知,基因突变具有不定向性或低频性的特点。若找到具有抗真菌基因的二倍体野生香蕉,可采用多倍体育种的方式,用一定浓度的秋水仙素处理二倍体野生香蕉萌发的种子或幼苗以获得四倍体野生香蕉,再以该四倍体野生香蕉为母本,以二倍体野生香蕉作父本,让二者进行杂交,从其后代的三倍体无子香蕉中选育出抗病的品种。 1.根据育种目标选择育种方案 育种目标 育种方案 集中双亲优良性状 单倍体育种(明显缩短育种年限) 杂交育种(耗时较长,但简便易行) 对原品系实施“定向”改造 基因工程及植物细胞工程(植物体细胞杂交)育种 让原品系产生新性状(无中生有) 诱变育种(可提高变异频率,期望获得理想性状) 使原品系营养器官“增大”或“加强” 多倍体育种 2.关注“三最”定方向 (1)最简便——侧重于技术操作,杂交育种操作最简便。 (2)最快——侧重于育种时间,单倍体育种所需时间明显缩短。 (3)最准确——侧重于目标精准度,基因工程技术可“定向”改变生物性状。 考点三 低温诱导植物染色体数目的变化 1.实验原理 低温处理植物分生组织细胞→纺锤体不能形成→染色体不能被拉向两极→细胞不能分裂→细胞染色体数目加倍。 2.实验步骤 1.低温诱导植物染色体数目变化的实验中的试剂及其作用 试剂 使用方法 作用 卡诺氏液 将根尖放入卡诺氏液中浸泡0.5~1 h 固定细胞形态 体积分数为 95%的酒精 冲洗用卡诺氏液处理的根尖 洗去卡诺氏液 质量分数为 15%的盐酸 与体积分数为95%的酒精等体积混合,作为解离液 解离根尖细胞 蒸馏水 浸泡解离后的根尖约10 min 洗去药液,防止解离过度 改良苯酚 品红染液 把漂洗干净的根尖放进盛有改良苯酚品红染液的玻璃皿中染色3~5 min 使染色体着色 2.低温诱导染色体数目变化的实验与观察细胞有丝分裂实验的操作步骤基本相同,但也有不同。 项目 低温诱导植物染色体数目的变化 观察根尖分生组织细胞的有丝分裂 培养 待洋葱长出1 cm左右不定根时放入冰箱低温室(4 ℃)诱导培养36 h 适宜温度下培养 固定 解离前用卡诺氏液进行固定,然后用体积分数为95%的酒精冲洗2次 不用固定 染色 用改良苯酚品红染液 用醋酸洋红液或龙胆紫溶液 问题探究 (1)本实验是否温度越低效果越显著? 提示 不是,必须为“适当低温”,以防止温度过低对根尖细胞造成伤害。 (2)观察时是否所有细胞中染色体均已加倍? 提示 不是,只有少部分细胞实现“染色体加倍”,大部分细胞仍为二倍体分裂状况。 (3)待洋葱长出不定根时,为何要将整个装置放入冰箱内低温处理长达36 h? 提示 如果低温诱导洋葱根尖时间过短,细胞将无法完成一个细胞周期,进而可能观察不到染色体数目加倍的细胞。 (4)卡诺氏液和解离液的作用一样吗? 提示 不一样。卡诺氏液是固定液的一种。固定液的作用是固定细胞形态以及细胞内的各种结构,固定之后,细胞死亡并且定型,不再代谢也不再变化。解离液的作用主要是溶解细胞间的连接物质,将组织中的细胞分散开来,便于观察,解离之后细胞死亡。 命题点一 实验基础 1.用质量分数为2%的秋水仙素处理植物分生组织5~6 h,能够诱导细胞内染色体加倍。某生物小组为了探究用一定时间的低温(如4 ℃)处理水培的洋葱根尖是否也能诱导细胞内染色体加倍进行了相关实验设计。下列关于该实验的叙述中,错误的是( ) A.本实验的假设是用一定时间的低温处理水培的洋葱根尖能够诱导细胞内染色体加倍 B.本实验可以在显微镜下观察和比较经过不同处理后根尖细胞内的染色体数目 C.本实验需要制作根尖细胞的临时装片,制作步骤是解离→漂洗→染色→制片 D.本实验可以看到一个细胞完整的染色体数目加倍的过程 答案 D 解析 由于在装片制作过程中已经将细胞杀死,所以用显微镜观察时看不到一个细胞完整的染色体数目加倍的过程,故D项错误。 2.有关“低温诱导大蒜根尖细胞染色体加倍”的实验,正确的叙述是( ) A.多倍体形成过程中增加了非同源染色体重组的机会 B.解离液和卡诺氏液都可以使洋葱根尖解离 C.在诱导染色体数目变化方面,低温与秋水仙素诱导的原理相似 D.显微镜下可以看到大多数细胞染色体数目加倍 答案 C 解析 多倍体形成过程中细胞进行的是有丝分裂,不会出现非同源染色体重组现象,A项错误;卡诺氏液是固定液,B项错误;低温与秋水仙素诱导染色体数目变化的原理都是在有丝分裂前期抑制纺锤体的形成,C项正确;显微镜下可以看到少数细胞染色体数目加倍,D项错误。 命题点二 实验拓展 3.(评价修订实验)以下材料选自某同学所做实验的部分记录。 实验名称:低温诱导植物细胞染色体数目的变化 实验步骤: 培养固定:将洋葱放在装满清水的广口瓶上,待根长出1 cm左右,剪取根尖0.5~1 cm,置于盛有清水的培养皿内,并在冰箱的冷藏室诱导培养36 h,将诱导后的根尖放入卡诺氏液中浸泡0.5~1 h,然后用体积分数为95%的酒精冲洗两次。 装片制作:解离→染色→漂洗→制片。 观察:先用低倍镜寻找染色体形态较好的分裂图像,确认某个细胞染色体发生数目变化后,再用高倍镜观察。 实验结论:低温条件下根尖所有细胞染色体数目都加倍。 问题:(1)请将上述内容中错误之处予以改正。 ①________________________________________________________________________; ②________________________________________________________________________; ③________________________________________________________________________。 (2)低温导致染色体数目加倍的原因是________________________________。如果要探究诱导染色体数目变化的最适温度,请写出简单的设计思路:__________________________。 答案 (1)①将整个培养装置放入冰箱的低温室内 ②解离→漂洗→染色→制片 ③部分细胞染色体数目发生变化或者没有细胞发生染色体数目变化 (2)低温抑制纺锤体的形成 设置不同温度梯度的实验组,观察并比较实验结果 解析 (1)由于实验是低温诱导植物染色体数目的变化,所以在实验过程中,待根长出约1 cm 的不定根时,要将整个培养装置放入冰箱的低温室内(4 ℃),诱导培养36 h;细胞有丝分裂装片制作过程为取材→解离→漂洗→染色→制片→观察,所以实验中将漂洗与染色颠倒了;细胞在低温下不会都发生变异,而且大多数细胞处于分裂间期,所以低温条件下根尖只有部分细胞染色体数目发生变化或者没有细胞发生染色体数目的变化,而不可能所有细胞染色体数目都加倍。(2)低温导致染色体数目加倍的原因是抑制纺锤体的形成,温度不同,诱导的效果也不一样;要探究诱导染色体数目变化的最适温度,需要设置不同温度梯度的实验组,观察并比较实验结果。 4.(补充完善实验)四倍体大蒜的产量比二倍体大蒜高许多,为探究诱导大蒜染色体数目加倍的最适温度,设计了如下实验: (1)实验主要材料:大蒜、培养皿、恒温箱、卡诺氏液、体积分数为95%的酒精、质量分数为15%的盐酸、显微镜、改良苯酚品红染液等。 (2)实验步骤 ①取5个培养皿,编号并分别加入纱布和适量的水。 ②将培养皿分别放入-4 ℃、0 ℃、________、________、12 ℃的恒温箱中培养1 h。 ③取大蒜随机均分成____________组,分别放入5个培养皿中诱导培养36小时。 ④分别取根尖0.5~1 cm,放入______________中固定0.5~1 h,然后用__________冲洗2次。 ⑤制作装片:解离→________→__________→制片。 ⑥低倍镜检测,统计每组视野中的染色体数目加倍率,并记录结果。 (3)实验结果:染色体数目加倍率最高的一组为最适温度。 (4)实验分析 ①设置实验步骤②的目的:_______________________________________________________。 ②除低温外,__________________也可以诱导染色体数目加倍,原理是_________________。 答案 (2)②4 ℃ 8 ℃ ③5 ④卡诺氏液 体积分数为95%的酒精 ⑤漂洗 染色 (4)①将培养皿放在不同温度下恒温处理,是为了进行相互对照;恒温处理1 h是为了在DNA复制时尽可能使细胞处于设定温度中,以排除其他温度干扰 ②秋水仙素 抑制纺锤体的形成 解析 本实验目的是探究诱导大蒜染色体数目加倍的最适温度,所以温度应设置为自变量,不同温度处理是为了进行相互对照,恒温处理1 h是为了在DNA复制时尽可能使细胞处于设定温度中,以排除其他温度的干扰。但低温并不可能使所有细胞染色体数目加倍,所以要统计加倍率来确定最适温度。 矫正易错 强记长句 1.基因突变中碱基对的增添、缺失属于分子水平的变化,在光学显微镜下观察不到;染色体结构变异中的重复、缺失属于细胞水平的变化,在光学显微镜下能观察到。 2.单倍体不一定仅含1个染色体组:单倍体所含染色体组的个数不定,可能含1个、2个或多个染色体组,可能含同源染色体,可能含等位基因。 3.单倍体并非都不育。由二倍体的配子发育成的单倍体,表现为高度不育,而多倍体的配子若含有偶数个染色体组,则其发育成的单倍体中含有同源染色体就可育并能产生后代。 4.“可遗传”≠“可育”。三倍体无子西瓜、骡子、二倍体的单倍体等均表现为“不育”,但它们均属于可遗传变异。 5.诱变育种与杂交育种相比,前者能产生新基因,创造变异新类型;后者不能产生新基因,只是实现原有基因的重新组合。 6.诱变育种尽管能提高突变率,但仍然是未突变个体远远多于突变个体,有害突变多于有利突变,只是与自然突变的低频性相比,有利突变个体数有所增加。 7.正确理解育种中“最简便”与“最快速”:“最简便”着重于技术含量应为“易操作”,如杂交育种,虽然年限长,但农民自己可简单操作。但“最快速”则未必简便,如单倍体育种可明显缩短育种年限,但其技术含量却较高。 8.正确理解“单倍体育种”与“花药离体培养”:单倍体育种包括花药离体培养和秋水仙素处理等过程;花药离体培养只是单倍体育种的一个操作步骤。 1.图甲与图乙分别表示培育三倍体西瓜的两种方法,则: (1)甲中的西瓜植株减数分裂形成花粉的过程中,着丝点分裂的时期是减数第二次分裂后期。 (2)乙所涉及的变异原理是染色体(数目)变异,四倍体西瓜植株群体是不同于二倍体西瓜的新物种,理由是与二倍体植株产生了生殖隔离,群体本身能自由交配产生可育后代。 (3)三倍体高度不育的原因是形成配子过程中,同源染色体联会紊乱。 2.在一块高秆(纯合)小麦田中,发现了一株矮秆小麦。请设计实验方案探究该性状出现的可能原因(简要写出所用方法、结果和结论):取该小麦种子在其他小麦田种下,让其自交,若全是高秆,说明矮秆性状的出现是由环境引起的;若后代出现高秆、矮秆两种性状,则是基因突变引起的。 3.简述用基因型为AaBb(抗病卵形叶)的植株作材料,获得基因型为AABB的抗病卵形叶植株的过程:取AaBb植株的花药离体培养得单倍体幼苗,秋水仙素诱导染色体加倍,用相应病原体感染卵形叶植株,保留抗病植株。 重温高考 演练模拟 1.图中甲、乙两个体的一对同源染色体中各有一条发生变异(字母表示基因)。下列叙述正确的是( ) A.个体甲的变异对表现型无影响 B.个体乙细胞减数分裂形成的四分体异常 C.个体甲自交的后代,性状分离比为3∶1 D.个体乙染色体没有基因缺失,表现型无异常 答案 B 解析 个体甲的变异属于缺失基因“e”所在片段,影响表现型,A项错误;个体乙发生的变异是倒位,减数分裂形成的四分体异常,B项正确;含缺失染色体的配子一般是败育的,故其后代一般不发生性状分离,C项错误;个体乙染色体没有基因缺失,但发生倒位,表现型发生异常,D项错误。 2.(2015·全国Ⅱ,6)下列关于人类猫叫综合征的叙述,正确的是( ) A.该病是由于特定的染色体片段缺失造成的 B.该病是由于特定染色体的数目增加造成的 C.该病是由于染色体组数目成倍增加造成的 D.该病是由于染色体中增加某一片段引起的 答案 A 解析 人类猫叫综合征是人的第5号染色体部分缺失引起的,A项正确,B、C、D项错误。 3.(2015·海南,21)关于基因突变和染色体结构变异的叙述,正确的是( ) A.基因突变都会导致染色体结构变异 B.基因突变与染色体结构变异都会导致个体表现型改变 C.基因突变与染色体结构变异都会导致碱基序列的改变 D.基因突变与染色体结构变异通常都用光学显微镜观察 答案 C 解析 基因突变的实质是基因中碱基对序列的改变,结果是产生等位基因,不会导致染色体结构变异,A项错误;基因突变不一定引起个体表现型的改变,B项错误;由于染色体是DNA的主要载体,染色体结构变异会引起DNA碱基序列的改变,C项正确;基因突变在光学显微镜下是看不见的,D项错误。 4.(2013·全国,5)下列实践活动中包含基因工程技术的是 ( ) A.水稻F1花药经培养和染色体加倍,获得基因型纯合新品种 B.抗虫小麦与矮秆小麦杂交,通过基因重组获得抗虫矮秆小麦 C.将含抗病基因的重组DNA导入玉米细胞,经组织培养获得抗病植株 D.用射线照射大豆使其基因结构发生改变,获得种子性状发生变异的大豆 答案 C 解析 A项为单倍体育种,原理是染色体变异;B项为杂交育种,原理为基因重组;C项为基因工程育种,需要利用基因工程技术将重组DNA分子导入受体细胞,原理为基因重组;D项为诱变育种,原理为基因突变。 5.某自花且闭花受粉植物,抗病性和茎的高度是独立遗传的性状。抗病和感病由基因R和r控制,抗病为显性;茎的高度由两对独立遗传的基因(D、d,E、e)控制,同时含有D和E表现为矮茎,只含有D或E表现为中茎,其他表现为高茎。现有感病矮茎和抗病高茎两品种的纯合种子,欲培育纯合的抗病矮茎品种。 请回答: (1)自然状态下,该植物一般都是____合子。 (2)若采用诱变育种,在γ射线处理时,需要处理大量种子,其原因是基因突变具有______________________和有害性这三个特点。 (3)若采用杂交育种,可通过将上述两个亲本杂交,在F2等分离世代中________抗病矮茎个体,再经连续自交等________手段,最后得到稳定遗传的抗病矮茎品种。据此推测,一般情况下,控制性状的基因数越多,其育种过程所需的____________。若只考虑茎的高度,亲本杂交所得的F1在自然状态下繁殖,则理论上F2的表现型及其比例为_______________。 (4)若采用单倍体育种,该过程涉及的原理有______________________________________。请用遗传图解表示其过程(说明:选育结果只需写出所选育品种的基因型、表现型及其比例)。 答案 (1)纯 (2)不定向性、低频性 (3)选择 纯合化 年限越长 高茎∶中茎∶矮茎= 1∶6∶9 (4)细胞的全能性、基因重组和染色体变异 如下图 解析 (1)由于该植物是自花且闭花受粉植物,所以在自然状态下一般都是纯合子。 (2)诱变育种时,要用γ射线处理种子的原理是基因突变。由于基因突变具有不定向性、低频性和少利多害性等特点,所以需要处理大量种子。 (3)如果采用杂交育种的方式,将上述两个亲本杂交,得F1,F1自交所得F2中选出抗病矮茎个体(D_E_R_),再通过连续自交及逐代淘汰的手段,最终获得能稳定遗传的抗病矮茎品种(DDEERR)。一般情况下,控制性状的基因数量越多,需进行多次的自交和筛选操作才能得到所需的纯合品种,因此其育种过程所需年限越长。若只考虑茎的高度,F1(DdEe)在自然状态下繁殖即自交后,F2中表现型及比例为9矮茎(9D_E_)∶6中茎(3D_ee、3ddE_)∶1高茎(1ddee)。 (4)若采用单倍体育种的方式获得所需品种,首先需将花药进行离体培养得到单倍体,继而使用秋水仙素对其进行处理使其染色体数目加倍,该过程涉及的原理有细胞的全能性及基因重组和染色体变异。其遗传图解见答案。 1.如图所示为某种生物体细胞中的染色体及其部分基因,下列选项中不属于染色体变异的是 ( ) 答案 C 解析 A项中,abc所在的染色体和GH所在的染色体之间发生了互换,而且这两条染色体为非同源染色体,属于染色体结构变异中的易位;B项中所示染色体应该是fgh,缺失了h 基因所在片段,属于染色体结构变异中的缺失;C项中,ABCDe应该是由d基因突变成D基因形成的,属于基因突变,不属于染色体变异;D项中,BACde应该是由题图中ABCde所在的染色体发生了颠倒形成的,属于染色体结构变异中的倒位。 2.如图为果蝇体内某个细胞的示意图,下列相关叙述正确的是( ) A.图中的染色体1、5、3、7、8可组成一个染色体组 B.图中标注的三对基因的遗传符合自由组合定律 C.含有基因B、D的染色体片段发生交换属于染色体结构变异 D.若该细胞分裂后产生了一个AbdXX的配子,则一定是减数第一次分裂异常 答案 C 解析 图中的染色体1、5、3、7或1、5、3、8可组成一个染色体组;图中标注的位于1、2两条同源染色体上的两对基因A、a与B、b的遗传不符合基因的自由组合定律;含有基因B、D的两条非同源染色体片段发生交换属于染色体结构变异中的易位;若该细胞分裂后产生了一个AbdXX的配子,则可能是减数第一次分裂异常,也可能是减数第二次分裂异常。 3.(2017·怀化二模)下列关于单倍体、二倍体及染色体组的叙述正确的是( ) A.单倍体生物的体细胞中都没有同源染色体 B.21三体综合征患者的体细胞中有三个染色体组 C.人的初级卵母细胞中的一个染色体组中可能存在等位基因 D.用秋水仙素处理二倍体西瓜幼苗的芽尖后,芽尖的细胞中都含有4个染色体组 答案 C 解析 同源四倍体的单倍体中含有两个染色体组,有同源染色体,A项错误;21三体综合征患者的21号染色体为三条,并不是三倍体,B项错误;人的初级卵母细胞中的一个染色体组中由于在复制时可能出现基因突变或在减数第一次分裂前期发生交叉互换,从而出现等位基因,C项正确;用秋水仙素处理萌发的种子或幼苗,使其染色体数目加倍,但不一定都加倍,D项错误。 4.下图是四种生物的体细胞示意图,A、B图中的字母代表细胞中染色体上的基因,C、D图代表细胞中染色体情况。那么最可能属于多倍体的细胞是( ) 答案 D 解析 根据题图可推知A、D项有可能为多倍体,但有丝分裂过程的前期和中期,每条染色体上含有两条姐妹染色单体,而姐妹染色单体上含有相同的基因,则一对同源染色体可能具有相应的4个基因,如A项。故最可能属于多倍体的细胞是D项。 5.(2018·重庆模拟)某男子表现型正常,但其一条14号和一条21号染色体相互连接形成一条异常染色体,如图甲所示。减数分裂时异常染色体的联会如图乙所示,配对的三条染色体中,任意配对的两条染色体分离时,另一条染色体随机移向细胞任一极。下列叙述正确的是( ) A.图甲所示的变异属于基因重组 B.观察异常染色体应选择处于分裂间期的细胞 C.若不考虑其他染色体,理论上该男子产生的精子类型有8种 D.该男子与正常女子婚配能生育染色体组成正常的后代 答案 D 解析 图甲所示的两条染色体的变化实质是一条染色体的部分片段移接到另一条非同源染色体上,实质是染色体结构变异中的易位,A项错误;分裂间期的细胞,染色体正处于染色质状态,不便于观察,应在分裂中期染色体的形态较稳定、数目较清晰时进行观察,B项错误;根据题意,任意两条染色体进行配对,其他一条随机分配,会出现3种分离方式,每种又会产生2种配子,因此理论上该男子产生的精子类型有6种,C项错误;该男子的异常染色体和两条正常染色体进行联会,减数第一次分裂后期同源染色体分离之后,根据题意可得到一个染色体组成正常(含有一条14号染色体和一条21号染色体)的细胞和一个染色体组成异常的细胞,从而得到正常的精细胞,则与正常女子婚配可生育出正常的后代,D项正确。 6.科研人员发现某水稻品种发生突变,产生了新基因SW1,其表达产物能使植株体内赤霉素含量下降,从而降低植株高度。将该品种作为亲本进行杂交,获得了后代“IR8水稻”,既高产又抗倒伏。下列叙述正确的是( ) A.SW1基因通过控制酶的合成,间接控制了生物的性状 B.进行“IR8水稻”的育种时,应用的原理是基因突变 C.在育种时,科研人员无法让水稻产生定向突变,这体现了基因突变的低频性 D.“IR8水稻”拥有抗倒伏的性状,根本原因是体内赤霉素含量较低影响植株的生长 答案 A 解析 SW1基因表达产物能使植株体内赤霉素含量下降,从而降低植株高度,说明基因通过控制酶的合成,间接控制了生物的性状,A项正确;将该品种作为亲本进行杂交,获得了后代“IR8水稻”,这属于杂交育种,其原理是基因重组,B 项错误;在育种时,科研人员无法让水稻产生定向突变,体现了基因突变的不定向性,C项错误;“IR8水稻”拥有抗倒伏的性状,直接原因是体内赤霉素含量较低影响植株的生长,根本原因是发生了基因突变,D项错误。 7.水稻的高秆、矮秆分别由A和a控制,抗病和不抗病分别由B和b控制。现有基因型为aabb与AABB的水稻品种,下图为不同的育种方法培育矮秆抗病植株的过程,下列有关叙述正确的是( ) A.杂交育种包括①③过程,其原理是基因突变和基因重组 B.人工诱变育种为②过程,B可能来自b的基因突变 C.单倍体育种包括①④⑤过程,⑤过程常用花药离体培养法 D.多倍体育种包括①⑥⑦过程,原理是染色体结构和数目变异 答案 B 解析 过程①③为杂交育种,其原理是基因重组,而不是基因突变,A项错误;②过程为人工诱变育种,将aabb人工诱变可获得aaBB,b变成B的方式为基因突变,B项正确;过程①④⑤为单倍体育种,子一代产生的配子经花药离体培养(④)得到单倍体,单倍体经秋水仙素处理(⑤)染色体加倍,选育得到aaBB,C项错误;过程①⑥⑦为多倍体育种,可获得多倍体aaaaBBBB,多倍体育种的原理是染色体数目加倍(即染色体数目变异),D项错误。 8.某生物兴趣小组的同学将生长旺盛的洋葱不定根置于4 ℃的冰箱冷藏室中培养36小时后,剪取根尖制成临时装片,然后用显微镜观察细胞中染色体的分裂相。下列叙述正确的是( ) A.低温处理能阻断洋葱根尖细胞中DNA的复制 B.用改良苯酚品红染液处理根尖可使染色体着色 C.制作临时装片前可用卡诺氏液维持细胞的活性 D.低倍镜视野中所有细胞染色体数都已发生改变 答案 B 解析 低温处理能阻断洋葱根尖细胞中纺锤体的形成,A项错误;卡诺氏液固定后细胞已经死亡,C项错误;细胞周期中间期时间最长,故视野中间期细胞数目最多,因此大多数细胞染色体数未发生改变,D项错误。 9.下图是三倍体西瓜育种原理的流程图,请据图回答下列问题: (1)秋水仙素可诱导多倍体的产生,其作用为__________________________________________ ________________________________________________________________________。 (2)四倍体母本上结出的三倍体西瓜,其果肉细胞中有________个染色体组,种子的胚细胞中有________个染色体组。三倍体植株不能形成生殖细胞的原因是__________________。 (3)育种过程中,三倍体无子西瓜偶尔有少量种子。请从染色体组的角度解释,其原因是_____ _______________________________________________________________________________。 (4)三倍体无子西瓜的性状________(填“能”或“不能”)遗传,请设计简单实验验证你的结论并做出预期实验结果。 设计方案:将三倍体无子西瓜果皮的任意一部分_______________ ________________________________________________________________________。 结果预期:________________________________________________。 答案 (1)抑制分裂前期的细胞形成纺锤体 (2)四 三 联会紊乱 (3)一个染色体组的全部染色体正好移向细胞的一极,另外两个染色体组的全部染色体正好移向细胞的另一极,产生了正常的配子 (4)能 进行植物组织培养(或无性繁殖),观察果实中是否有种子 成活长大后的植株仍然不能结出有子果实 解析 (1)秋水仙素诱导产生多倍体,其作用是抑制分裂前期的细胞形成纺锤体。(2)由于果实的果肉部分是由母本的子房壁细胞分裂、分化而来的,与父本无关,所以四倍体母本上结出的三倍体西瓜,其果肉细胞中含有四个染色体组。种子中的胚是由卵细胞和精子结合成受精卵发育而成,所以胚细胞中含三个染色体组。三倍体植株在减数分裂过程中联会发生紊乱,不能形成正常的生殖细胞。(3)育种过程中,三倍体无子西瓜偶尔有少量的种子,原因是减数第一次分裂后期,一个染色体组的全部染色体正好移向了细胞的一极,另外两个染色体组的全部染色体正好移向了细胞的另一极,产生了正常的配子。(4)三倍体无子西瓜的育种原理是染色体数目变异,是一种可遗传的变异,它的性状是可以遗传的,但必须用无性繁殖的手段进行培养,如植物组织培养。 10.(2017·东城区二模)视网膜母细胞癌基因(R)是一种抑癌基因,杂合子(Rr)仍具有抑癌功能。杂合子在个体发育过程中,一旦体细胞的杂合性丢失形成纯合子(rr)或半合子(r),就会失去抑癌的功能而导致恶性转化。如图为视网膜母细胞增殖过程中杂合性丢失的可能机制,下列分析不正确的是( ) A.1是由于含R的染色体丢失而导致半合子(r)的产生 B.2是由于发生了染色体片段的交换而导致纯合子(rr)的产生 C.3是由于缺失了含R的染色体片段而导致半合子(r)的产生 D.4是由于R基因突变成了r导致纯合子(rr)的产生 答案 B 解析 1是由于含R的染色体丢失而导致半合子(r)的产生,A项正确;同源染色体之间染色体片段的交换发生在减数分裂过程中,而体细胞不进行减数分裂,B项错误;3是由于缺失了含R的染色体片段而导致半合子(r)的产生,C项正确;4是由于R基因突变成了r基因导致纯合子(rr)的产生,D项正确。 11.果蝇的体色中灰身对黑身为显性,由位于常染色体上的B、b基因控制,只含有其中一个基因的个体致死。如图为果蝇培育和杂交实验的示意图。下列叙述错误的是( ) A.乙属于诱变得到的染色体变异个体 B.通过②筛选时,含异常染色体的个体均为雌性 C.F1中有1/2果蝇的细胞中含有异常染色体 D.F1中雌性个体的体色理论上均为灰色 答案 C 解析 据图分析,在60Co照射下,乙的B基因片段移接到X染色体上,因此乙属于诱变得到的染色体结构变异中的染色体易位的变异个体。 乙配子 F1基因型 甲配子 BXB BY OXB OY bX BbXBX (灰身雌性) BbXY (灰身雄性) bOXBX (灰身雌性) bOXY (死亡) 注:表中XB表示易位后的基因,O表示配子中缺失该基因。 由上表可知,通过②筛选含异常染色体的个体基因型为BbXBX、bOXBX,均为雌性;F1中有2/3果蝇的细胞中含有异常染色体;理论上,F1中雌性个体均为灰色。 12.(2017·潍坊一模)水稻的杂种表现为生长和产量的优势,但水稻一般是自花传粉且去雄困难,很难实施人工杂交,袁隆平等成功培育出高产杂交水稻的关键是在野生稻中找到了雄性不育植株。科学研究已证明水稻雄性是否可育是由细胞核基因(可育基因R对不育基因r 为显性)和细胞质基因(可育基因为N,不育基因为S,细胞质中基因都成单存在,子代的细胞质基因全部来自母方)共同控制的。基因R能够抑制基因S的表达,当细胞质中有基因N时,植株都表现为雄性可育。如图表示利用雄性不育植株培育杂种水稻的过程,请回答下列问题: P ♂N(RR)或S(RR) × ♀S(rr) ↓⊗ ↓ F1 N(RR)或S(RR) S(Rr)大田生产中用于播种 (1)根据上述信息推测水稻雄性可育植株的基因型共有____种,利用雄性不育植株进行杂交共有____种杂交组合。 (2)上图中杂交获得的种子播种后,发育成的植株恢复雄性可育的原因是__________________ ________________________________________________________________________。 (3)杂交水稻需年年育种,但上述育种过程不能保留雄性不育植株,请参照题图中的遗传图解模式,写出长期稳定获得雄性不育植株的育种方案。 答案 (1)5 5 (2)来自父本的R基因使后代恢复雄性可育 (3)如图 P ♂N(rr) × ♀S(rr) ↓⊗ ↓ F1 N(rr) S(rr) 解析 (1)根据题干信息可知,只有S(rr)表现雄性不育,N(RR)、N(Rr)、N(rr)、S(RR)、S(Rr)均表现为雄性可育,共5种。利用雄性不育作为母本,与雄性可育个体(5种基因型)进行杂交,一共有5种杂交组合。 (2)由雄性不育个体作为母本,其产生的卵细胞为S(r),父本产生的精子中含有R基因,会导致该种子播种后,发育成的植株恢复雄性可育。 (3)杂交水稻需年年育种,但上述育种过程不能保留雄性不育植株,若要长期稳定获得雄性不育植株的育种方案,可以让N(rr)不断自交获得雄性可育个体,让N(rr)与S(rr)杂交获得S(rr),遗传图解见答案。 13.在栽培某种农作物(2n=42)的过程中,有时会发现单体植株(2n-1),例如有一种单体植株就比正常植株缺少一条6号染色体,称为6号单体植株。请回答: (1)6号单体植株的变异类型为____________,该植株的形成是因为亲代中的一方在减数分裂过程中____________________________未分离而形成异常配子所致。 (2)6号单体植株在减数第一次分裂时能形成__________个四分体。如果该植株能够产生数目相等的n型和n-1型配子,则自交后代(受精卵)的染色体组成类型及比例为_______________ ________________________________________________________________________。 (3)科研人员利用6号单体植株进行杂交实验,结果如下表所示。 杂交亲本 实验结果 6号单体(♀)×正常二倍体(♂) 子代中单体占75%, 正常二倍体占25% 6号单体(♂)×正常二倍体(♀) 子代中单体占4%, 正常二倍体占96% ①单体♀在减数分裂时,形成的n-1型配子________(填“多于”“等于”或“少于”)n型配子,这是因为6号染色体往往在减数第一次分裂过程中因无法__________而丢失。 ②n-1型配子对外界环境敏感,尤其是______________(填“雌”或“雄”)配子的育性很低。 (4)现有该作物的两个品种,甲品种抗病但其他性状较差(抗病基因R位于6号染色体上),乙品种不抗病但其他性状优良,为获得抗病且其他性状优良的品种,理想的育种方案是:以乙品种6号单体植株为____________(填“父本”或“母本”)与甲品种杂交,在其后代中选出单体,再连续多代与____________杂交,每次均选择抗病且其他性状优良的单体植株,最后使该单体________,在后代中即可挑选出RR型且其他性状优良的新品种。 答案 (1)染色体变异(染色体数目变异) 6号染色体的同源染色体或姐妹染色单体 (2)20 正常二倍体(2n)∶单体(2n-1)∶缺体(2n-2)=1∶2∶1 (3)①多于 联会(无法形成四分体) ②雄 (4)母本 乙品种6号单体 自交 解析 (1)6号单体植株比正常植株缺少一条6号染色体,故6号单体植株的变异类型为染色体数目变异,该植株的形成是因为亲代中的一方在减数分裂过程中6号染色体的同源染色体或姐妹染色单体未分离而形成异常配子所致。 (2)某种农作物(2n=42),则单体植株为2n-1=41条染色体,故6号单体植株在减数第一次分裂时能形成20个四分体。如果该植株能够产生数目相等的n型和n-1型配子,则自交后代(受精卵)的染色体组成类型及比例为正常二倍体(2n)∶单体(2n-1)∶缺体(2n-2)=1∶2∶1。 (3)①据表格数据可知,单体♀在减数分裂时,形成的n-1型配子多于n型配子,这是因为6号染色体往往在减数第一次分裂过程中因无法联会(无法形成四分体)而丢失。②据表格数据可知,n-1型配子对外界环境敏感,尤其是雄配子的育性很低。 (4)根据(3)中的②可知,n-1型雄配子的育性很低,则以乙品种6号单体植株为母本与甲品种杂交,在其后代中选出单体,再连续多代与乙品种6号单体杂交,每次均选择抗病且其他性状优良的单体植株,最后使该单体自交,在后代中即可挑选出RR型且其他性状优良的新品种。查看更多