- 2021-05-06 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教版(理)第10章第4讲随机事件的概率学案
第4讲 随机事件的概率 [考纲解读] 1.了解随机事件概率的意义,理解频率与概率的区别.(重点) 2.掌握互斥事件的概率加法公式.(难点) [考向预测] 从近三年高考情况来看,本讲内容一般不作独立考查,预测2020年将会考查:①对立、互斥与古典概型结合,基本概率的计算;②随机事件与频率分布直方图相结合. 以客观题的形式呈现,试题难度不大,属中、低档题型. 1.事件的分类 2.频率和概率 (1)在相同的条件S下重复n次实验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率. (2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率. 3.事件的关系与运算 4.概率的几个基本性质 (1)概率的取值范围:0≤P(A)≤1. (2)必然事件的概率P(E)=1. (3)不可能事件的概率P(F)=0. (4)概率的加法公式 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). (5)对立事件的概率 若事件A与事件B互为对立事件,则P(A)=1-P(B). 1.概念辨析 (1)若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1.( ) (2)在大量重复试验中,概率是频率的稳定值.( ) (3)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.( ) (4)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含结果组成集合的补集.( ) (5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( ) 答案 (1)× (2)√ (3)√ (4)√ (5)√ 2.小题热身 (1)下列事件中不可能事件的个数为( ) ①如果a>b,c>d,则a-d>b-c;②对某中学的毕业生进行一次体检,每个学生的身高都超过2 m;③某电视剧收视率为40%;④从10个玻璃杯(其中8个正品,2个次品)中,任取2个,2个都是次品;⑤在不受外力作用的条件下,做匀速直线运动的物体改变其匀速直线运动状态. A.1 B.2 C.3 D.4 答案 B 解析 ①是必然事件;②⑤是不可能事件;③④是随机事件.故选B. (2)某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”( ) A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件 C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件 答案 C 解析 3名男生和2名女生,从中任选2名有以下可能:①全是男生;②恰有1名女生;③全是女生,所以“至少有一名女生”与“全是男生”既是互斥事件,也是对立事件. (3)给出下列三个命题,其中正确的命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是; ③随机事件发生的频率就是这个随机事件发生的概率. 答案 0 解析 由概率的概念知,从中任取100件,可能有10件次品,并不是必有10件次品,则①是假命题;抛硬币时出现正面的概率是,不是,则②是假命题;频率和概率不是同一个概念,则③是假命题.综上可知,正确的命题有0个. (4)从一箱产品中随机抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为________. 答案 0.35 解析 “抽到的不是一等品”与“抽到一等品”是对立事件,所以抽到的不是一等品的概率P=1-P(A)=1-0.65=0.35. 题型 随机事件的关系 1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( ) A.互斥但非对立事件 B.对立事件 C.相互独立事件 D.以上都不对 答案 A 解析 “甲向南”与“乙向南”不会同时发生,但有可能都不发生,所以这两个事件互斥但不对立. 2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率为的事件是( ) A.至多有一张移动卡 B.恰有一张移动卡 C.都不是移动卡 D.至少有一张移动卡 答案 A 解析 至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,因此“至多有一张移动卡” 的概率为. 判断互斥、对立事件的两种方法 (1)定义法 判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件. (2)集合法 ①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥. ②事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集. 某小组有3名男生和2名女生,从中选2名同学去参加演讲比赛,下列有4个事件:①恰有1名男生和恰有2名男生;②至少有1名男生和至少有1名女生;③至少有1名男生和全是男生;④至少有1名男生和全是女生,其中是互斥事件的是________(填序号). 答案 ①④ 解析 对于事件①,恰有1名男生是1男1女与恰有2名男生互斥;对于事件②,至少1名男生与至少1名女生两者有可能同时发生,所以不是互斥事件;对于③,至少1名男生与全是男生也有可能同时发生,所以不是互斥事件;对于事件④,至少1名男生和全是女生不可能同时发生,是互斥事件. 题型 随机事件的频率与概率 1.对一批衬衣进行抽样检查,结果如表: (1)求次品出现的频率(次品率); (2)记“任取一件衬衣是次品”为事件A,求P(A); (3)为了保证买到次品的顾客能够及时更换,销售1000件衬衣,至少需进货多少件? 解 (1)次品率依次为0,0.02,0.06,0.054,0.045,0.05,0.05. (2)由(1)知,出现次品的频率在0.05附近摆动,故P(A)=0.05. (3)设购进衬衣x件,则x(1-0.05)≥1000,解得x≥1053,故至少需进货1053件. 2.(2018·全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: (1)作出使用了节水龙头50天的日用水量数据的频率分布直方图: (2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表) 解 (1) (2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3 的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为 1=×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48. 该家庭使用了节水龙头后50天日用水量的平均数为2=×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35. 估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3). 1.计算简单随机事件频率或概率的解题思路 (1)计算出所求随机事件出现的频数及总事件的频数. (2)由频率与概率的关系得所求. 2.求解以统计图表为背景的随机事件的频率或概率问题的关键点 求解该类问题的关键是由所给频率分布表、频率分布直方图或茎叶图等图表计算出所求随机事件出现的频数,进而利用频率与概率的关系得所求. (2019·福建基地综合测试)某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元. (1)若商店一天购进该商品10件,求日利润y(单位:元)关于日需求量n(单位:件,n∈N)的函数解析式; (2)商店记录了50天该商品的日需求量n(单位:件),整理得下表: 日需求量n 8 9 10 11 12 频数 9 11 15 10 5 ①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数; ②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求日利润在区间[400,550]内的概率. 解 (1)当日需求量n≥10时, 日利润为y=50×10+(n-10)×30=30n+200, 当日需求量n<10时, 利润y=50×n-(10-n)×10=60n-100. 所以日利润y与日需求量n的函数解析式为 y= (2)50天内有9天获得的日利润为380元,有11天获得的日利润为440元,有15天获得日利润为500元,有10天获得的日利润为530元,有5天获得的日利润为560元. 所以 ①这50天的日利润(单位:元)的平均数为 =477.2. ②日利润(单位:元)在区间[400,550]内的概率为 P==. 题型 互斥事件与对立事件的概率 角度1 互斥事件概率公式的应用 1.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( ) A.0.3 B.0.4 C.0.6 D.0.7 答案 B 解析 设事件A为只用现金支付,事件B为只用非现金支付,事件C为既用现金支付也用非现金支付,则P(A)+P(B)+P(C)=1,因为P(A)=0.45,P(C)=0.15,所以P(B)=0.4.故选B. 角度2 对立事件概率公式的应用 2.某班选派5人参加学校举行的数学竞赛,获奖的人数及其概率如下: 获奖人数/人 0 1 2 3 4 5 概率 0.1 0.16 x y 0.2 z (1)若获奖人数不超过2人的概率为0.56,求x的值; (2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值. 解 记事件“在竞赛中,有k人获奖”为Ak(k∈N,k≤5),则事件Ak 彼此互斥. (1)∵获奖人数不超过2人的概率为0.56, ∴P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56.解得x=0.3. (2)由获奖人数最多4人的概率为0.96,得 P(A5)=1-0.96=0.04,即z=0.04. 由获奖人数最少3人的概率为0.44, 得P(A3)+P(A4)+P(A5)=0.44, 即y+0.2+0.04=0.44,解得y=0.2. 求复杂的互斥事件概率的方法 (1)直接法 (2)间接法(正难则反) 1.某城市2018年的空气质量状况如表所示: 其中污染指数T≤50时,空气质量为优;50查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档