- 2021-04-28 发布 |
- 37.5 KB |
- 33页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2018届一轮复习人教A版 空间向量及其运算 学案
专题43 空间向量及其运算 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的线性运算及其坐标表示; 3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直. 1.空间向量的有关概念 名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a=b 相反向量 方向相反且模相等的向量 a的相反向量为-a 共线向量 表示空间向量的有向线段所在的直线互相平行或重合 a∥b 共面向量 平行于同一个平面的向量 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb. (2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,把{a,b,c}叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是0≤〈a,b〉≤π,若〈a,b〉=,则称a与b互相垂直,记作a⊥b. ②两向量的数量积 已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律 ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 4.空间向量的坐标表示及其应用 设a=(a1,a2,a3),b=(b1,b2,b3). 向量表示 坐标表示 数量积 a·b a1b1+a2b2+a3b3 共线 a=λb(b≠0) a1=λb1,a2=λb2,a3=λb3 垂直 a·b=0 (a≠0,b≠0) a1b1+a2b2+a3b3=0 模 |a| 夹角 〈a,b〉(a≠0,b≠0) cos〈a,b〉= 高频考点一 空间向量的线性运算 例1、(1)已知在空间四边形OABC中,=a,=b,=c,点M在OA上,且OM=2MA,N为BC中点,则等于( ) A.a-b+c B.-a+b+c C.a+b-c D.a+b-c (2)如图所示,在长方体ABCD-A1B1C1D1中,O为AC的中点. ①化简--=; ②用,,表示,则=. 答案 (1)B (2)① ②++ 解析 (1)显然=- =(+)- =-a+b+c. 【感悟提升】用已知向量表示某一向量的方法 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立. 【变式探究】三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量,,表示,. 解 =+=+ =+(-) =+[(+)-] =-++. =+=-++ =++. 高频考点二 共线定理、共面定理的应用 例2、已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点, (1)求证:E、F、G、H四点共面; (2)求证:BD∥平面EFGH; (3)设M是EG和FH的交点,求证:对空间任一点O,有=(+++). 证明 (1)如图,连接BG, 则=+ =+(+) =++=+, 由共面向量定理的推论知: E、F、G、H四点共面. (2)因为=- =-=(-)=, 所以EH∥BD. 又EH⊂平面EFGH,BD⊄平面EFGH, 所以BD∥平面EFGH. (3)找一点O,并连接OM,OA,OB,OC,OD,OE,OG,如图所示. 由(2)知=,同理=, 所以=,即EH綊FG, 所以四边形EFGH是平行四边形. 所以EG,FH交于一点M且被M平分. 故=(+)=+ =+ =(+++). 【感悟提升】(1)证明点共线的方法 证明点共线的问题可转化为证明向量共线的问题,如证明A,B,C三点共线,即证明,共线,亦即证明=λ(λ≠0). (2)证明点共面的方法 证明点共面问题可转化为证明向量共面问题,如要证明P,A,B,C四点共面,只要能证明=x+y或对空间任一点O,有=+x+y或=x+y+z(x+y+z=1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件. 【变式探究】如图,正方体ABCD-A1B1C1D1中,E是A1B上的点,F是AC上的点,且A1E=2EB,CF=2AF,则EF与平面A1B1CD的位置关系为. 高频考点三 空间向量数量积的应用 例3、如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点. (1)求证:MN⊥AB,MN⊥CD; (2)求MN的长; (3)求异面直线AN与CM所成角的余弦值. (1)证明 设=p,=q,=r. 由题意可知,|p|=|q|=|r|=a,且p、q、r三向量两两夹角均为60°. =-=(+)- =(q+r-p), ∴·=(q+r-p)·p =(q·p+r·p-p2) =(a2cos60°+a2cos60°-a2)=0. ∴⊥.即MN⊥AB. 同理可证MN⊥CD. (2)解 由(1)可知=(q+r-p), ∴||2=(q+r-p)2 =[q2+r2+p2+2(q·r-p·q-r·p)] =[a2+a2+a2+2(--)]=×2a2=. ∴||=a.∴MN的长为a. (3)解 设向量与的夹角为θ. ∵=(+)=(q+r), =-=q-p, ∴·=(q+r)·(q-p) =(q2-q·p+r·q-r·p) =(a2-a2cos60°+a2cos60°-a2cos60°) =(a2-+-)=. 又∵||=||=a, ∴·=||||cosθ=a×a×cosθ=. ∴cosθ=. ∴向量与的夹角的余弦值为,从而异面直线AN与CM所成角的余弦值为. 【方法技巧】数量积的应用 (1)求夹角,设向量a,b所成的角为θ,则cosθ=,进而可求两异面直线所成的角; (2)求长度(距离),运用公式|a|2=a·a,可使线段长度的计算问题转化为向量数量积的计算问题; (3)解决垂直问题,利用a⊥b⇔a·b=0(a≠0,b≠0),可将垂直问题转化为向量数量积的计算问题。 【变式探究】如图所示,四棱柱ABCD-A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°. (1)求AC1的长; (2)求证:AC1⊥BD; (3)求BD1与AC夹角的余弦值. 解 (1)记=a,=b,=c, 则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°, ∴a·b=b·c=c·a=. ||2=(a+b+c)2=a2+b2+c2+2(a·b+b·c+c·a) =1+1+1+2×(++)=6, ∴||=,即AC1的长为. (2)∵=a+b+c, =b-a, ∴·=(a+b+c)(b-a) =a·b+|b|2+b·c-|a|2-a·b-a·c =b·c-a·c =|b|·|c|cos60°-|a||c|cos60°=0. ∴⊥,∴AC1⊥BD. 1.【2016高考新课标2理数】如图,菱形的对角线与交于点,,点分别在上,,交于点.将沿折到位置,. (Ⅰ)证明:平面; (Ⅱ)求二面角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】 (Ⅰ)由已知得,,又由得,故. 因此,从而.由,得. 由得.所以,. 于是, 故. 又,而, 所以. (Ⅱ)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,则,,,,,,,.设是平面的法向量,则,即,所以可取.设是平面的法向量,则,即,所以可取.于是, .因此二面角的正弦值是. 2.【2016高考山东理数】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线. (I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC; (II)已知EF=FB=AC=,AB=BC.求二面角的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 【解析】 (II)解法一: 连接,则平面, 又且是圆的直径,所以 以为坐标原点,建立如图所示的空间直角坐标系, 由题意得,,过点作于点, 所以 可得 故. 设是平面的一个法向量. 由 可得 可得平面的一个法向量 因为平面的一个法向量 所以. 所以二面角的余弦值为. 从而为二面角的平面角. 又,是圆的直径, 所以 从而,可得 所以二面角的余弦值为. 3.【2016高考天津理数】(本小题满分13分) 如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2. (I)求证:EG∥平面ADF; (II)求二面角O-EF-C的正弦值; (III)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值. 【答案】(Ⅰ)详见解析(Ⅱ)(Ⅲ) 【解析】依题意,,如图,以为点,分别以的方向为轴,轴、轴的正方向建立空间直角坐标系,依题意可得,. (I)证明:依题意,.设为平面的法向量,则,即 .不妨设,可得,又,可得,又因为直线,所以. (III)解:由,得.因为,所以,进而有,从而,因此.所以,直线和平面所成角的正弦值为. 4.【2016年高考北京理数】(本小题14分) 如图,在四棱锥中,平面平面,,,, ,,. (1)求证:平面; (2)求直线与平面所成角的正弦值; (3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由. 【答案】(1)见解析;(2);(3)存在, 【解析】(1)因为平面平面,, 所以平面,所以, 又因为,所以平面; (2)取的中点,连结,, 因为,所以. 又因为平面,平面平面, 所以平面. 因为平面,所以. 因为,所以. 如图建立空间直角坐标系,由题意得, . 设平面的法向量为,则 即 令,则. 所以. 又,所以. 所以直线与平面所成角的正弦值为. (3)设是棱上一点,则存在使得. 因此点. 因为平面,所以平面当且仅当, 即,解得. 所以在棱上存在点使得平面,此时. 5.【2016高考浙江理数】(本题满分15分)如图,在三棱台中,平面平面 ,,BE=EF=FC=1,BC=2,AC=3. (I)求证:EF⊥平面ACFD; (II)求二面角B-AD-F的平面角的余弦值. 【答案】(I)证明见解析;(II). 【解析】(Ⅰ)延长,,相交于一点,如图所示. 因为平面平面,且,所以平面,因此. 又因为,,, 所以为等边三角形,且为的中点,则. 所以平面. (Ⅱ)方法一:过点作于Q,连结. 因为平面,所以,则平面,所以. 所以是二面角的平面角. 在中,,,得. 在中,,,得. 所以二面角的平面角的余弦值为. 方法二:如图,延长,,相交于一点,则为等边三角形. 取的中点,则,又平面平面,所以,平面. 以点为原点,分别以射线,的方向为,的正方向,建立空间直角坐标系. 由题意得,,,,,. 因此,,,. 设平面的法向量为,平面的法向量为. 由,得,取; 由,得,取. 于是,. 所以,二面角的平面角的余弦值为. 6.【2016年高考四川理数】(本小题满分12分) 如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD,E为边AD的中点,异面直线PA与CD所成的角为90°. (Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由; (Ⅱ)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ). 【解析】(Ⅰ)在梯形ABCD中,AB与CD不平行. 延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下: 由已知,BC∥ED,且BC=ED. 所以四边形BCDE是平行四边形.,所以CD∥EB 从而CM∥EB. 又EB平面PBE,CM平面PBE, 所以CM∥平面PBE. (说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点) (Ⅱ)方法一: 由已知,CD⊥PA,CD⊥AD,PAAD=A, 所以CD⊥平面PAD. 从而CD⊥PD. 所以∠PDA是二面角P-CD-A的平面角. 所以∠PDA=45°. 设BC=1,则在Rt△PAD中,PA=AD=2. 过点A作AH⊥CE,交CE的延长线于点H,连接PH. 易知PA⊥平面ABCD, 从而PA⊥CE. 于是CE⊥平面PAH. 所以平面PCE⊥平面PAH. 过A作AQ⊥PH于Q,则AQ⊥平面PCE. 所以∠APH是PA与平面PCE所成的角. 在Rt△AEH中,∠AEH=45°,AE=1, 所以AH=. 在Rt△PAH中,PH== , 所以sin∠APH= =. 方法二: 作Ay⊥AD,以A为原点,以 ,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0), 所以=(1,0,-2),=(1,1,0),=(0,0,2) 设平面PCE的法向量为n=(x,y,z), 由 得 设x=2,解得n=(2,-2,1). 设直线PA与平面PCE所成角为α,则sinα= = . 所以直线PA与平面PCE所成角的正弦值为 . 【2015高考湖南,理19】如图,已知四棱台上、下底面分别是边长为3和6的正方形,,且底面,点,分别在棱,BC上. (1)若P是的中点,证明:; (2)若平面,二面角的余弦值为,求四面体的体积. 【答案】(1)详见解析;(2). 【解析】 解法一 由题设知,,,两两垂直,以为坐标原点,,,所在直线分别为轴,轴,轴,建立如图b所示的空间直角坐标系,则相关各点的坐标为,, , , ,其中,, (1)若是的中点,则,,于是,∴,即;(2)由题设知,,是平面内的两个不共线向量. 设是平面的一个法向量,则,即, 取,得,又平面的一个法向量是, ∴,而二面角的余弦值为,因此,解得,或者(舍去),此时, 设,而,由此得点, ,∵平面,且平面的一个法向量是, ∴,即,亦即,从而,于是,将四面体视为以为底面的三棱锥,则其高,故四面体的体积. (2)如图d,过点作交于点,则平面, ∵平面,∴平面,过点作于点,连结,则,为二面角的平面角,∴,即,从而③ 连结,由平面,∴,又是正方形,所以为矩形,故,设,则 ④,过点作交于点,则为矩形,∴,,因此,于是,∴,再由③④得,解得,因此,故四面体的体积. 【2015高考上海,理19】(本题满分12分)如图,在长方体中,,,、分别是、的中点.证明、、、四点共面,并求直线与平面所成的角的大小. 【答案】 【解析】解:如图,以为原点建立空间直角坐标系,可得有关点的坐标为、、、、、. 因为,, 所以,因此直线与共面, 即、、、共面. 设平面的法向量为,则,, 又,, 故,解得. 取,得平面的一个法向量.又, 故. 因此直线与平面所成的角的大小为. 1.(2014·广东卷)已知向量a=(1,0,-1),则下列向量中与a成60°夹角的是( ) A.(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1) 【答案】B 【解析】本题考查空间直角坐标系中数量积的坐标表示.设所求向量是b,若b与a成60°夹角,则根据数量积公式,只要满足=即可,所以B选项满足题意. 2.(2014·重庆卷]如图13所示,四棱锥PABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=,MP⊥AP. (1)求PO的长; (2)求二面角APMC的正弦值. 图13 【解析】解:(1)如图所示,连接AC,BD,因为四边形ABCD为菱形,所以AC∩ BD=O,且AC⊥BD.以O为坐标原点,,,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系O xyz. 因为∠BAD=, 所以OA=AB·cos=,OB=AB·sin=1, 所以O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),=(0,1,0),=(-,-1,0). 由BM=,BC=2知,==, 从而=+=, 即M. 设P(0,0,a),a>0,则=(-,0,a),=.因为MP⊥AP,所以·=0,即-+a2=0,所以a=或a=-(舍去),即PO=. 由n2·=0,n2·=0,得 故可取n2=(1,-,-2). 从而法向量n1,n2的夹角的余弦值为 cos〈n1,n2〉==-, 故所求二面角APMC的正弦值为. 1.在下列命题中: ①若向量a,b共线,则向量a,b所在的直线平行; ②若向量a,b所在的直线为异面直线,则向量a,b一定不共面; ③若三个向量a,b,c两两共面,则向量a,b,c共面; ④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc. 其中正确命题的个数是( ). A.0 B.1 C.2 D.3 答案 A 2.已知a=(-2,1,3),b=(-1,2,1),若a⊥(a-λb),则实数λ的值为( ) A.-2 B.- C. D.2 答案 D 解析 由题意知a·(a-λb)=0,即a2-λa·b=0, 所以14-7λ=0,解得λ=2. 3.已知{a,b,c}是空间的一个基底,{a+b,a-b,c}是空间的另一个基底,一向量p在基底{a,b,c}下的坐标为(4,2,3),则向量p在基底{a+b,a-b,c}下的坐标是( ) A.(4,0,3) B.(3,1,3) C.(1,2,3) D.(2,1,3) 答案 B 解析 设p在基底{a+b,a-b,c}下的坐标为x,y,z. 则p=x(a+b)+y(a-b)+zc =(x+y)a+(x-y)b+zc,① 因为p在{a,b,c}下的坐标为(4,2,3) ∴p=4a+2b+3c,② 由①②得∴ 即p在{a+b,a-b,c}下的坐标为(3,1,3). 4.空间四边形ABCD的各边和对角线均相等,E是BC的中点,那么( ) A.·<· B.·=· C.·>· D.·与·的大小不能比较 答案 C 解析 取BD的中点F,连接EF,则EF綊CD,因为〈,〉=〈,〉>90°,因为·=0,·<0,所以·>·. 5.已知a,b是异面直线,A,B∈a,C,D∈b,AC⊥b,BD⊥b且AB=2,CD=1,则异面直线a,b所成的角等于( ) A.30°B.45° C.60°D.90° 答案 C 解析 如图,设=a,=b,=c,则=a+b+c, 所以cos〈,〉==, 所以异面直线a,b所成的角等于60°, 故选C. 6.在空间四边形ABCD中,则·+·+·的值为. 答案 0 解析 方法一 如图,令=a,=b,=c, 则·+·+· =·(-)+·(-)+·(-) =a·(c-b)+b·(a-c)+c·(b-a) =a·c-a·b+b·a-b·c+c·b-c·a =0. 方法二 如图,在三棱锥A-BCD中,不妨令其各棱长都相等,则正四面体的对棱互相垂直. ∴·=0,·=0, ·=0. ∴·+·+·=0. 7.A,B,C,D是空间不共面四点,且·=0,·=0,·=0,则△BCD的形状是三角形(填锐角、直角、钝角中的一个). 答案 锐角 解析 因为·=(-)·(-) =·-·-·+2 =2>0, 所以∠CBD为锐角. 同理∠BCD,∠BDC均为锐角. 8.设O-ABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1,若=x+y+z,则(x,y,z)为. 答案 (,,) 解析 如图所示,取BC的中点E,连接AE. = =(+) =+ =+(+) =+(-+-) =(++), ∴x=y=z=. 9.已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=,b=. (1)求向量a与向量b的夹角的余弦值; (2)若ka+b与ka-2b互相垂直,求实数k的值. 解 (1)∵a=(1,1,0),b=(-1,0,2), ∴a·b=(1,1,0)·(-1,0,2)=-1, 又|a|==, |b|==, ∴cos〈a,b〉===-, 即向量a与向量b的夹角的余弦值为-. (2)方法一 ∵ka+b=(k-1,k,2). ka-2b=(k+2,k,-4), 且ka+b与ka-2b互相垂直, ∴(k-1,k,2)·(k+2,k,-4) =(k-1)(k+2)+k2-8=0, ∴k=2或k=-, ∴当ka+b与ka-2b互相垂直时, 实数k的值为2或-. 方法二 由(1)知|a|=,|b|=,a·b=-1, ∴(ka+b)·(ka-2b)=k2a2-ka·b-2b2 =2k2+k-10=0,得k=2或k=-. ∴当ka+b与ka-2b互相垂直时,实数k的值为2或-. 10.如图,在棱长为a的正方体OABC-O1A1B1C1中,E、F分别是棱AB、BC上的动点,且AE=BF=x,其中0≤x≤a,以O为原点建立空间直角坐标系Oxyz. (1)写出点E、F的坐标; (2)求证:A1F⊥C1E; (3)若A1、E、F、C1四点共面,求证:=+. (1)解 E(a,x,0),F(a-x,a,0). (3)证明 ∵A1、E、F、C1四点共面, ∴、、共面. 选与为在平面A1C1E上的一组基向量,则存在唯一实数对(λ1,λ2),使=λ1+λ2, 即(-x,a,-a)=λ1(-a,a,0)+λ2(0,x,-a) =(-aλ1,aλ1+xλ2,-aλ2), ∴ 解得λ1=,λ2=1. 于是=+.查看更多