- 2021-04-28 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】黑龙江省大庆市第四中学2019-2020学年高二下学期期末考试(理)
黑龙江省大庆市第四中学2019-2020学年 高二下学期期末考试(理) 考试时间:120分钟 分值:150分 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷(选择题 共60分) 注意事项: 1、答第I卷前,考生务必将自己的姓名、准考证号填写在答题卡上;条形码粘贴在指定位置. 2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.在试卷纸上作答无效.如需作图先用铅笔定型,再用黑色签字笔描绘。 一、选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 已知复数为虚数单位,若是纯虚数,则实数( ) A. B. C. D. 2. 已知集合,集合,则集合的子集个数为 ( ) A. B. C. D. 3.下列与函数定义域和单调性都相同的函数是 ( ) A. B. C. D. 4.已知某随机变量服从正态分布,且,则=( ) A. B. C. D. 5.下列关于回归分析的说法中错误的有( )个 ①.残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高. ②.回归直线一定过样本中心(,). ③.两个模型中残差平方和越小的模型拟合的效果越好. ④.甲、乙两个模型的R2分别约为0.88和0.90,则模型乙的拟合效果更好. A.4 B.3 C.2 D.1 6.某班有6名班干部,其中4名男生,2名女生.从中选出3人参加学校组织的社会实践活动,在男生甲被选中的情况下,女生乙也被选中的概率为 ( ) A. B. C. D. 7.给出下列命题,其中真命题为 ( ) ① 用数学归纳法证明不等式时, 当时,不等式左边应在的基础上加上; ② 若命题:,则; ③ 若,则; A.①② B.① C.② D.②③ 8.为支援湖北抗击新冠疫情,无锡市某医院欲从6名医生和4名护士中抽选3人(医生和护士均至少有一人)分配到A,B,C三个地区参加医疗救援(每个地区一人),方案要求医生不能去A地区,则分配方案共有 ( ) A.264种 B.224种 C.250种 D.236种 9.已知函数,其中为函数的导数,则 ( ) A.2 B.2019 C.2018 D.0 10.已知展开式中项的系数为,其中,则此二项式展开式中各项系数之和是 ( ) A. B.或 C. D.或 11.已知方程在上有两个不等的实数根,则实数的取值范围为( ) A. B. C. D. 12.设函数f(x)的导函数为,f(0)=1,且,则的解集是 ( ) A. B. C. D. 第Ⅱ卷(非选择题 共90分) 二、填空题:(本大题共4小题,每小题5分,满分20分.) 13.已知函数f(x)的定义域为(0,+∞),且,则f(x)=________. 14.设函数的定义域为A,的定义域为B,,则的取值范围是________. 15.已知函数在上是减函数,则实数的取值范围是________ 16.定义在上的函数满足且,又当且时,有.若对所有,恒成立,则实数的取值范围是__________. 三、解答题:(本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤.) 17、(本小题满分10分) 已知:;:. (1)若是的必要条件,求的取值范围; (2)若是的必要不充分条件,求的取值范围. 18、(本小题满分12分) 已知函数 (1)求函数的极值; (2)若函数在上的最小值为2,求它在该区间上的最大值. 19、(本小题满分12分) 端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽子3个,肉粽子2个,白粽子5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率; (2)设ξ表示取到的豆沙粽子个数,求ξ的分布列. 20、(本小题满分12分) 为庆祝党的100岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛.从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,,,,,,得到如图所示的频率分布直方图. (1)求图中的值及样本的中位数与众数; (2)若从竞赛成绩在与两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率. (3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖, 得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望. 21、(本小题满分12分) (1)讨论的单调性; (2)若有最大值-ln2,求m+n的最小值. 22、(本小题满分12分) 已知函数,. (I)当,时,求函数在处的切线方程 (II)若函数的两个零点分别为,,且,求证:. 参考答案 一、 选择题(每小题5分,共60分) 1 2 3 4 5 6 7 8 9 10 11 12 A D C A D A C A A B C A 二、填空题(每小题5分,共20分) 13、f(x)=+. 14、 15. 16、 三、解答题(本大题共6小题,共70分) 17【解析】由x2﹣8x﹣20≤0得﹣2≤x≤10,即P:﹣2≤x≤10,又q:1﹣m2≤x≤1+m2. (1)若p是q的必要条件,则,即,即m2≤3,解得, 即m的取值范围是. (2)∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件. 即,即m2≥9,解得m≥3或 m≤﹣3即m的取值范围是(﹣∞,﹣3]∪[3,+∞). 18【解析】(1) ,或 当x变化时,,的变化情况如下表: 0 2 0 0 极小值 极大值 则极大值为,极小值为 (2)由(1)知在上单调递减,在上单调递增,在上单调递减 又,所以最小值为a,且,最大值在或处取,,所以在上的最大值为22. 19.【答案】(1)设一盘中装有10个粽子,其中豆沙粽子3个,肉粽子2个,白粽子5个, 这三种粽子的外观完全相同,从中任意选取3个,基本事件总数n120, 三种粽子各取到1个包含的基本事件个数m30,∴三种粽子各取到1个的概率p. (2)设ξ表示取到的豆沙粽子个数, 由题意得ξ的可能取值为0,1,2,3, P(ξ=0),P(ξ=1), P(ξ=2),P(ξ=3), ∴ξ的分布列为: ξ 0 1 2 3 P 20【解析】(1)由频率分布直方图可知,解得,可知样本的中位数在第4组中,不妨设为, 则,解得,即样本的中位数为, 由频率分布直方图可知,样本的众数为. (2)由频率分布直方图可知,在与两个分数段的学生人数分别为和,设中两名学生的竞赛成绩之差的绝对值不大于5分为事件M, 则事件M发生的概率为,即事件M发生的概率为. (3)从考生中随机抽取三名,则随机变量为获得三等奖的人数,则, 由频率分布直方图知,从考升中任抽取1人,此生获得三等奖的概率为, 所以随机变量服从二项分布,则, , 所以随机变量的分布列为 0 1 2 3 0.343 0.441 0.189 0.027 所以. 21(1)函数定义域为, 当时,,∴在上单调递增; 当时,得, ∴在上单调递增;在上单调递减. (2)由(1)知,当时,在上单调递增;在上单调递减. ∴, ∴ 令 ∴在上单调递减,在上单调递增, 22【解析】(I)解:当,时,,, 则,切点为,故函数在处的切线方程为 . (II)证明:∵,是的两个零点,不妨设, ∴, ,, ∴,, 相减得: , , ∴ , 令,即证,, , 令,,, 在上是增函数,又∵, ∴,,命题得证. 查看更多