七年级上册数学期中试卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

七年级上册数学期中试卷

七年级上册数学期中试卷(含答案)‎ 一、选择题(共10小题,每小题3分,满分30分) 1.﹣2的相反数是(  )   A. 0              B. ﹣ 1             C.﹣2             D.2 2.在0,﹣1.5,1,-2四个数中,最小的数是(  )   A. 0             B. 1                C. ﹣2            D.-1.5 3.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是(  )   A. 15×107       B. 0.15×109         C. 1.5×108       D. 1.5亿 4.下列各组运算中,结果为负数的是(  )   A. ﹣(﹣3) B. ﹣|﹣3| C. ﹣(﹣2)3 D.  (﹣3)×(﹣2)          5. 运算结果是(  )   A. ±3               B. -3               C. 9                D. 3 6.若用a表示 ,则在数轴上与a-1最接近的数所表示的点是(  ) ‎ A. A               B.  B                 C. C                 D. D 7.下列各组整式中,不是同类项的是(  )   A. ﹣7与2.1      B.2xy与﹣5yx          C. a2b与ab2          D.mn2与3n2m 8.下列各式计算正确的是(  )   A. 4m2n﹣2mn2=2mn B. ﹣2a+5b=3ab   C. 4xy﹣3xy=xy D. a2+a2=a4 9.有下列说法:①无理数是无限不循环小数;②数轴上的点与有理数一一对应;③绝对值等于本身的数是0;④一个数的平方根等于它本身的数是0,1.其中正确的个数是(  )  A. 1               B. 2                  C. 3                  D. 4‎ ‎10.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是(  )     A. ab>0    B. a+b<0    C.(b﹣1)(a﹣1)>0     D.(b﹣1)(a+1)>0‎ 二、填空题(共10小题,每小题3分,满分30分) 11.  的倒数是      . 12.16的算术平方根是      . 13.单项式 的系数是   ,次数是  次;多项式 是   次多项式. 14.如果代数式x=-1,y=2,则代数式6﹣2x+4xy的值为      . 15.x的 倍与y的平方的和可表示为      . 16.由四舍五入得到的近似数83.52万,精确到      位. 17.已知一个正数的两个平方根分别是3a+1和a+7,这个正数是      18.若m、n满足 ,则 =      . 19.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则 =       ‎ ‎20. 甲、乙、丙三家超市为了促销一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是      . 三、解答题(共6小题,满分40分) 21.(6分)把下列各数填在相应的表示集合的大括号内:  , ,0. , , ,﹣1.4, ,﹣3, ,0,10%,1.1010010001…(每两个1之间依次多一个0) 整  数{                                             …}; 正分数{                                            …}; 无 理 数{                                             …}.  ‎ ‎22.(6分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来: 3 ,﹣2.5,|﹣2|,0, ,(﹣1)2.‎ ‎ ‎ ‎23.(每小题2分,共8分)计算: (1)(﹣1)﹣(﹣7)+(﹣8)                  (2)   (3)  ( + ﹣ )×(﹣60)                                 (4)﹣22+  (1﹣ )2           ‎ ‎24.(6分)先化简,再求值: ,其中x=2,y=-1   25.(6分)把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表. (1)用如图方式框住表中任意4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是      ,      ,      . (2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x的值;若不能,则说明理由 ‎ ‎26.(8分)上海股民杨先生上星期五交易结束时买进某公司股票1000股,每股50元,下表为本周内每日该股的涨跌情况(星期六、日股市休市)。 星期 一 二 三 四 五 每股涨跌 3 3.5 -2 1.5 -3 (1) 星期三收盘时,每股是多少元? (2) 本周内每股最高价是多少元?最低价是多少元? (3) 已知买进股票还要付成交金额2‰的手续费,卖出时还需要付成交额2‰的手续费和1‰交易税。如果在星期五按收盘价将全部股票卖出,他的收益情况如何?(‰是千分号)     七年级数学答案 二、选择题(共10小题,每小题3分,满分30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 D C C B D B C C A D ‎ 二、填空题(共10小题,每小题3分,满分30分) 11.                    12. 4                 13. ,   4;  4                   14.   0                  15.             16. 百 17.  25                  18. 1                 19.  2550                              20. 乙超市 三、解答题(共6小题,满分40分) 21.整  数{    ,  ,﹣3 , 0                            …};2分 正分数{  0.  ,    , 10%                                …};2分 无 理 数{   , ,1.1010010001…(每两个1之间依次多一个0)       …}.2分 22.   数轴略,         3分 ﹣2.5<  <0<(﹣1)2   <|﹣2|<3                        3分 23.(每小题2分,共8分) (1)-2                  (2)-12    (3)22                                  (4)-2.5     24.  =                 3分 其中x=2,y=-1     原式=-1                            3分 25.  x+8    ,  x+16    ,   x+24   .      (每空各1分,共3分)     x+(x+8)+(x+16)+(x+24)=244  (2分)    解得:x=49    (1分) 26.  (1) 54.5          (1分)       (2)最高价是56.5元,最低价是53元    (每空2分,共4分)       (3)收益是2741元         (3分)‎ ‎2015七年级上册数学期中试卷(有答案)‎ 作者:佚名 资料来源:网络 点击数: 有奖投稿 ‎2015七年级上册数学期中试卷(有答案)‎ 本资料为WORD文档,请点击下载地址下载 全文下载地址 ‎ 文 章来源 莲山 课件 w w w.5 Y k J.COm ‎ 河南省洛阳市孟津县2014~2015学年度七年级上学期期中数学试卷 ‎ ‎ 一、选择题(每小题3分,共21分)‎ ‎1.下列各数中互为相反数的是(  )‎ ‎  A. ﹣2与+(﹣2) B. ﹣(﹣1)与+(+1) C. (﹣2)2与﹣22 D. (﹣2)3与﹣23‎ ‎ ‎ ‎ 2.如图所示,在数轴上两点A、B分别表示的数是a,b,则下列四个数中最大的一个是(  )‎ ‎ ‎ ‎  A. a B. ﹣a C. b D. ﹣b ‎ ‎ ‎3.某粮店出售的三种品牌的面粉袋上,分别标有质量为kg、kg、kg的字样,从中任意拿出两袋,它们的质量最多相差(  )‎ ‎  A. 0.8kg B. 0.6kg C. 0.5kg D. 0.4kg ‎ ‎ ‎4.小芳和小明在手工制作课上各自制作楼梯模型,它们用的材料如图①和图②所示,则它们所用材料的周长(  )‎ ‎ ‎ ‎  A. 一样长 B. 小明的长 C. 小芳的长 D. 不能确定 ‎ ‎ ‎5.下列说法正确的是(  )‎ ‎  A. 有理数的绝对值一定是正数 ‎  B. 绝对值等于本身的数一定是正数 ‎  C. 有理数的绝对值一定是非负数 ‎  D. 如果两个数才绝对值相等,那么这两个数相等 ‎ ‎ ‎6.在算式1.25×(﹣ )×(﹣8)=1.25×(﹣8)×(﹣ )=[1.25×(﹣8)]×(﹣ )中 ,应用了(  )‎ ‎  A. 分配律 B. 分配律和结合律 ‎  C. 交换律和结合律 D. 交换律和分配律 ‎ ‎ ‎7.已知:|a|=3,|b|=2,且|a+b|<|a|+|b|,则a+b的值是(  )‎ ‎  A. ±5 B. ±3 C. 1 D. ±1‎ ‎ ‎ ‎ ‎ 二、填空题(本大题有13小题,每小题2分,共26分)‎ ‎8.x的2倍与y的平方的差是      .‎ ‎ ‎ ‎9.如果m与5互为相反数,则|m+3| 的值为      .‎ ‎ ‎ ‎10.求﹣ 与﹣ 的积除以﹣2 所得的商,可 列的算式是      .‎ ‎ ‎ ‎11.三个连续偶数中间一个是2n,则它的前一个和后一个分别是      .‎ ‎ ‎ ‎12.一批冰箱原来 每台售价a元,现在打九折售出了9台,则销售额为      元.‎ ‎ ‎ ‎13.已知a,b为两个连续整数,且a<﹣5 <b,则a2﹣b=      .‎ ‎ ‎ ‎14.据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,用科学记数法表示,我国一年因土地沙漠化造成的经济损失为      元.‎ ‎ ‎ ‎15.比较大小:﹣        (填“>”或“<”号)‎ ‎ ‎ ‎16.一个数的倒数的绝对值等于这个数的相反数,那么这个数是      .‎ ‎ ‎ ‎17.已知有理数﹣1,﹣8,+11,﹣2,请你通过有理数加 减混合运算,使运算结果最大,则列式为      .‎ ‎ ‎ ‎18.已知a,b为有理数,如果规定一种新运算“@”,定义a@b=a2﹣b2,则6@(﹣5)的结果是      .‎ ‎ ‎ ‎19.若a,b互为 相反数,c,d互为倒数,m为最小的非负数,a+b﹣(1﹣2m+m2)÷(cd)的值为      .‎ ‎ ‎ ‎20.|a|的几何意义是:数字上表示数a的点到原点的距离,例如|﹣3|=3;|a﹣b|的几何意义是:数字上表示数a和数b两点之间的距离,例如|6﹣(﹣5)|=11,如果x是一个有理数,且|x﹣2|=4,则x的值是      .‎ ‎ ‎ ‎ ‎ 三、解答题 ‎21.画出数轴,且在数轴上表示出下列各数,并用“<”把它们连接起来:2.5,﹣3,5 ,﹣2 ,﹣1.6,0.‎ ‎ ‎ ‎22.用简便方法计 算:(﹣3)×(﹣ )+0.25×24.5+(﹣3 )×25%‎ ‎23.已知:a是﹣(﹣5)的相反数,b比最小的正整数大4,c是最大的负整数.计算:3a+3b+c的值是多少?‎ ‎ ‎ ‎24.计算:4+50÷22×(﹣ )﹣|5 ﹣6|‎ ‎ ‎ ‎25.阅读下面的解题过程:‎ 计算:( )2﹣(﹣2)×( ﹣ )+ .‎ 解:原式= ﹣(﹣2)×( ﹣ )+ …(第一步)‎ ‎= ﹣( ﹣1)+ …(第二步)‎ ‎= + + …(第三步)‎ ‎=2…(第四步)‎ 回答下列问题:‎ ‎(1)上面解题过程中有两处错误,第一处:是第      步,错误的原因是      ;第二处:是第      步,错误的原因是      .‎ 直接写出正确的结果是      .‎ ‎ ‎ ‎26.一天两名同学利用温差测某座山峰的高度.在山脚测得温度是8℃,在山顶测得温度是﹣1℃,已知该山区高度每增加100米,气温大约下降0.6℃,请你帮这两名同学列式计算:这个山峰的山脚距山顶的高度大约是多少米.‎ ‎ ‎ ‎27.出租车司机小李某天下午从A地出发,营运全是在东西的人民大道进行的.如果 规定向东为正,向西为负,他这天营运的车次和里程如表(单位:千米):‎ 车次 ① ② ③ ④ ⑤ ⑥ ⑦‎ 里程 +15 ﹣8 +14 ﹣11 +6 ﹣12 +8‎ ‎(1)在哪次记录中距A地最远?‎ 将最后一名乘客送到目的地时,小李距出发地的距离是多少?‎ 若每千米耗油0.3L,问小李这天下午共耗油多少升.‎ ‎ ‎ ‎28.计算:0.252÷(﹣ )3+[﹣32×(﹣ )2+(﹣2)3]÷4.‎ ‎ ‎ ‎ ‎ 参考答案与试题解析 ‎ ‎ 一、选择题(每小题3分,共21分)‎ ‎1.下列各数中互为相反数的是(  )‎ ‎  A. ﹣2与+(﹣2) B. ﹣(﹣1)与+(+1) C. (﹣2)2与﹣22 D. (﹣2)3与﹣23‎ 考点: 相反数.‎ 分析: 根据只有符号不同的两个数互为相反数,可得一个数的相反数.‎ 解答: 解:A、﹣2=+(﹣2),故A错误;‎ B、只有符号不同的两个数互为相反数,故B错误;‎ C、只有符号不同的两个数互为相反数,故C正确;‎ D、两个数相等,故D不是相反数,故D错误;‎ 故选:C.‎ 点评: 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.‎ ‎ ‎ ‎2.如图所示,在数轴上两点A、B分别表示的数是a,b,则下列四个数中最大的一个是(  ) ‎ ‎ ‎ ‎  A. a B. ﹣a C. b D. ﹣b 考点: 有理数大小比较;数轴.‎ 分析: 先根据各点在数轴上的位置判断出其绝对值的大小,再在数轴上表示出﹣a与﹣b,根据数轴的特点即可得出结论.‎ 解答: 解:∵由图可知,﹣1<a<0<b<1,‎ ‎∴﹣a与﹣b在数轴上表示如图,‎ ‎∴四个数中最大的一个是﹣a.‎ 故选B.‎ ‎ ‎ 点评: 本题考查的是数轴,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.‎ ‎ ‎ ‎3.某粮店出售的三种品牌的面粉袋上,分别标有质量为kg、kg、kg的字样,从中任意拿出两袋,它们的质量最多相差(  )‎ ‎  A. 0.8kg B. 0.6kg C. 0.5kg D. 0.4kg 考点: 正数和负数.‎ 分析: 根 据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.‎ 解答: 解:根据题意从中找出两袋质量波动最大的kg,则相差0.3﹣(﹣0.3)=0.6kg.‎ 故选:B.‎ 点评: 解题关键是理解“正”和“负”的相对性,确定 一对具有相反意义的量.‎ ‎ ‎ ‎4.小芳和小明在手工制作课上各自制作楼梯模型,它们用的材料如图①和图②所示,则它们所用材料的周长(  )‎ ‎ ‎ ‎  A. 一样长 B. 小明的长 C. 小芳的长 D. 不能确定 考点: 生活中的平移现象.‎ 分析: 首先根据已知图形中两个图形中共同含有的边,再判断形状不同的边的长度即可.‎ 解答: 解:两个图形右侧边与左侧相等,上侧与下侧相等,‎ 即两个图形都可以利用平移的方法变为长为8cm,宽为5cm的矩形,‎ 所以两个图形的周长都为(8+5)×2=26(cm),‎ 所以他们用的材料一样长.‎ 故选:A.‎ 点评: 此题主要考查了平移的应用,考生通过观察、分析识别图形的能力,解决此题的关键是通过观察图形确定右侧与上侧各边的长相等.‎ ‎ ‎ ‎5.下列说法正确的是(  )‎ ‎  A. 有理数的绝对值一定是正数 ‎  B. 绝对值等于本身的数一定是正数 ‎  C. 有理数的绝 对值一定是非负数 ‎  D. 如果两个数才绝对值相等,那么这两个数相等 考点: 绝对值.‎ 分析: 根据 绝对值的定义和性质即可作出判断.‎ 解答: 解:A、0的绝对值是0,不是正数,选项错误;‎ B、0的绝对值是0,不是正数,故选项错误;‎ C、正确;‎ D、互为相反数的两个数的绝对值相等,故选项错误.‎ 故选C.‎ 点评: 此题主要考查了绝对值的性质,注意整数、0、正数之间的区别:0是整数但不是正数.‎ ‎6.在算式1.25×(﹣ )×(﹣8)=1.25×(﹣8)×(﹣ )=[1.25×(﹣8)]×(﹣ )中,应用了(  )‎ ‎  A. 分配律 B. 分配律和结合律 ‎  C. 交换律和结合律 D. 交换律和分配律 考点: 有理数的乘法.‎ 分析: 根据交换律:a×b×c=a×c×b;结合律:a×b×c=a×(b×c); 分配律:a×(b+c)=a×b+a×c 的公式,判断算式所运用的规律即可.‎ 解答: 解:算式1.25×(﹣ )×(﹣8)=1.25×(﹣8)×(﹣ )该步骤运用的是交换律,‎ ‎=[1.25×(﹣8)]×(﹣ )该步骤运用的是结合律,‎ 故答案为C.‎ 点评: 该题主要考察的是有理 数乘法的运算律公式,公式的正确熟练运用才是该题的关键.‎ ‎ ‎ ‎7.已知:|a|=3,|b|=2,且|a+b|<|a|+|b|,则a+b的值是(  )‎ ‎  A. ±5 B. ±3 C. 1 D. ±1‎ 考点: 绝对值.‎ 分析: 根据绝对值的性质首先求得a、b的值,然 后代入代数式求解即可.‎ 解答: 解:∵|a|=3,|b|=2,‎ ‎∴a=3或﹣3,b=2或﹣2.‎ 又∵|a+b|<|a|+|b|,‎ ‎∴a=3,b=﹣2或a=﹣3,b=2.‎ 则a+b=1或﹣1.‎ 故选 D. ‎ 点评: 本题考查了绝对值的性质,根据绝对值的性质求得a、b的值是关键.‎ ‎ ‎ 二、填空题(本大题有13小题,每小题2分,共26分)‎ ‎8.x的2倍与y的平方的差是 2x﹣y2 .‎ 考点: 列代数式.‎ 分析: 分别表示出x的2倍,y的平方,然后求出差.‎ 解答: 解:由题意得,2x﹣y2,‎ 故答案为:2x﹣y2.‎ 点评: 本题考查了列代数式,求出等量关系是解答本题的关键.‎ ‎ ‎ ‎9.如果m与5互为相反数,则|m+3|的值为 2 .‎ 考点: 相反数;绝对值.‎ 分析: 根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得答案.‎ 解答: 解:由m与5互为相反数,得 m=﹣5.‎ 由负数的绝对值是它的相反数,得 ‎|m+3|=|﹣5+3|=|﹣2|=2,‎ 故答案为:2.‎ 点评: 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数,负数的绝对值是它的相反数.‎ ‎ ‎ ‎10.求﹣ 与﹣ 的积除以﹣2 所得的商,可列的算式是 (﹣ )×(﹣‎ ‎ )÷(﹣2 ) .‎ 考点: 有理数的除法;有理数的乘法.‎ 专题: 计算题.‎ 分析: 根据题意列出算式即可.‎ 解答: 解:根据题意得:(﹣ )×(﹣ )÷(﹣2 ),‎ 故答案为:(﹣ )×(﹣ )÷(﹣2 )‎ 点评: 此题考查了有理数的除法,以及乘法,熟练掌握运算法则是解本题的关键.‎ ‎ ‎ ‎11.三个连续偶数中间一个是2n,则它的前一个和后一个分别是 2n﹣2,2n+2 .‎ 考点: 列代数式.‎ 分析: 分别用2n加上和减去2来表示出前后两个数.‎ 解答: 解:前后两个数分别为:2n﹣2,2n+2.‎ 故答案为:2n﹣2,2n+2.‎ 点评: 本题考查了列代数式的知识,解答本题的关键是掌握两个偶数之间相差2.‎ ‎ ‎ ‎12.一批冰箱原来每台售价a元,现在打九折售出了9台,则销售额为 8.1 元.‎ 考点: 列代数式.‎ 分析: 先求出每台的销售额,然后求出总销售额.‎ 解答: 解:每台售价为:0.9a,‎ 则9台售价为:9×0.9a=8.1a.‎ 故答案为:8.1a.‎ 点评: 本题考查了列代数式的知识,解答本题的关键是求出每台的销售额.‎ ‎ ‎ ‎13.已知a,b为两个连续整数,且a<﹣5 <b,则a2﹣b= 41 .‎ 考点: 有理数的混合运算.‎ 专题: 计算题.‎ 分析: 根据题意确定出a与b的值,代入原式计算即可得到结果.‎ 解答: 解:根据题意得:a=﹣6,b=﹣5,‎ 则原式=36+5=41.‎ 故答案为:41.‎ 点评: 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.‎ ‎ ‎ ‎14.据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,用科学记数法表示,我国一年因土地沙漠化造成的经济损失为 5.475×1010 元.‎ 考点: 科学记数法—表示较大的数.‎ 分析: 用每天的损失乘一年的天数,再根据科学记数法的 表示形式为a×10n的形式,其中1≤|a|<10,n为整数解答.‎ 解答: 解:1.5亿×365=547.5亿=54 750 000 000=5.475×1010.‎ 故答案为:5.475×1010.‎ 点评: 此题考查科学记数法表示较大的数的 方法,准确确定a与n值是关键.‎ ‎ ‎ ‎15.比较大小:﹣  <  (填“>”或“<”号)‎ 考点: 有理数大小比较.‎ 分析: 先求出它们的绝对值,再根据两个负数绝对值大的反而小的原则判断两个负数的大小.‎ 解答: 解:∵|﹣ |= = ,| |= = ,‎ ‎∴ > ,‎ ‎∴﹣ < .‎ 故答案为:<.‎ 点评: 本题考查了两个负数大小比较的方法:两个负数,绝对值大的反而小.‎ ‎ ‎ ‎16.一 个数的倒数的绝对值等于这个数的相反数,那么这个数是 ﹣1 .‎ 考点: 倒数;相反数;绝对值.‎ 分析: 根据互为倒数的两数之积为1,互为相反数的两数之和为0,一个负数的绝对值是正数可得出答案.‎ 解答: 解:设这个有理数是a,则根据题意有 ‎| |=﹣a,‎ ‎∵| |=﹣a>0‎ ‎∴a<0,‎ ‎∴﹣ =﹣a,即1=a2,‎ 解得,a=﹣1.‎ 故答案为:﹣1.‎ 点评: 本题考查相反数及倒数的知识,属于基础题,注意掌握互为倒数的两数之积为1,互为相反数的两数之和为0.‎ ‎17.已知有理数﹣1,﹣8,+11,﹣2,请你通过有理数加减混合运算,使运算结果最大,则列式为 +11﹣(﹣1﹣8﹣2) .‎ 考点: 有理数的加减混合运算.‎ 专题: 计算题.‎ 分析: 根据题意列出算式,使运算结果最大即可.‎ 解答: 解:根据题意得:+11﹣(﹣1﹣8﹣2),‎ 故答案为:+11﹣(﹣1﹣8﹣2).‎ 点评: 此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.‎ ‎ ‎ ‎18.已知a,b为有理数,如果规定一种新运算“@”,定义a@b=a2﹣b2,则6@(﹣5)的结果是 11 .‎ 考点: 有理数的混合运算.‎ 专题: 新定义.‎ 分析: 利用题中的新定义计算即可得到结果.‎ 解答: 解:根据题中的新定义得:6@(﹣5)=36﹣25=11,‎ 故答案为:11.‎ 点评: 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.‎ ‎ ‎ ‎19.若a,b互为相反数,c,d互为倒数,m为最小的非负数,a+b﹣(1﹣2m+m2)÷(cd)的值为 ﹣1 .‎ 考点: 代数式求值;相反数;倒数.‎ 分析: 利用相反数,倒数的定义,根据最小的非负数为0确定出m的值,代入原式计算即可得到结果.‎ 解答: 解:根据题意得:a+b=0,cd=1,m=0,‎ 则原式=0﹣1=﹣1,‎ 故答案为:﹣1.‎ 点评: 此题考查了代数式求值,相反数,倒数 ,熟 练掌握各自的定义是解本题的关键.‎ ‎ ‎ ‎20.| a|的几何意义是:数字上表示数a的点到原点的距离,例如|﹣3|=3;|a﹣b|的几何意义是:数字上表示数a和数b两点之间的距离,例如|6﹣(﹣5)|=11,如果x是一个有理数,且|x﹣2|=4,则x的值是 ﹣2或6 .‎ 考点: 绝对值;数轴.‎ 分析: 根据绝对值的几何意义以及数轴的知识列方程求解即可.‎ 解答: 解:∵|x﹣2|=4,‎ ‎∴x﹣2=4或x﹣2=﹣4,‎ 解得x=6或x=﹣2.‎ 故答案为:﹣2或6.‎ 点评: 本题考查了数轴,读懂题目信息,理解绝对值的几何 意义是解题的关键.‎ ‎ ‎ 三、解答题 ‎21.画出数轴,且在数轴上表示出下列 各数,并用“<”把它们连接起来:2.5,﹣3,5 ,﹣2 ,﹣1.6,0.‎ 考点: 有理数大小比较;数轴.‎ 分析: 先在数轴上表示出各数,再从左到右用“<”把它们连接起来即可.‎ 解答: 解:如图所示,‎ ‎ ,‎ 故﹣3<﹣2 <﹣1.6<0<2.5<5 .‎ 点评: 本题考查的是有理数的大小比较,熟知数 轴上右边的数总比左边的大的特点是解答此题的关键.‎ ‎ ‎ ‎22.用简便方法计算:(﹣3)×(﹣ )+0.25×24.5+(﹣3 )×25%‎ 考点: 有理数的乘法.‎ 分析: 先转化,然后逆运用乘法分配律进行计算即可得解.‎ 解答: 解:(﹣3)×(﹣ )+0.25×24.5+(﹣3 )×25%,‎ ‎=3× + ×24.5+(﹣3 )× ,‎ ‎= ×(3+24.5﹣3.5),‎ ‎= ×24,‎ ‎=6.‎ 点评: 本题考查了有理数的乘法,熟练掌握乘法分配律并灵活运用是解题的关键.‎ ‎ ‎ ‎2 3.已知:a是﹣(﹣5)的相反数,b比最小的正整数大4,c是最大的负整数.计算:3a+3b+c的值是多少?‎ 考点: 相反数;有理数的混合运算.‎ 分析: 先确定出a、b、c,然后代入代数式进行计算即可得解.‎ 解答 : 解:∵a是﹣(﹣5)的相反数,‎ ‎∴a=﹣5,‎ ‎∵b比最小的正整数大4,‎ ‎∴b=1+4=5,‎ ‎∵c是最大的负整数,‎ ‎∴c=﹣1,‎ ‎∴3a+3b+c=3×(﹣5)+3×5﹣1,‎ ‎=﹣15+15﹣1,‎ ‎=﹣1.‎ 点评: 本题考查了相反数的定义,有理数的混合运算,熟记概念与性质并求出a、b、c的值是解题的关键.‎ ‎ ‎ ‎24.计算:4+50÷22×(﹣ )﹣|5 ﹣6|‎ 考点: 有理数的混合运算.‎ 分析: 先算乘方和绝对值,再算乘除,最后算加减,由此顺序计算即可.‎ 解答: 解:原式=4+50÷4×(﹣ )﹣ ‎ ‎=4﹣ ﹣ ‎ ‎=1.‎ 点评: 此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.‎ ‎ ‎ ‎25.阅读下面的解题过程:‎ 计算:( )2 ﹣(﹣2)×( ﹣ )+ .‎ 解:原式= ﹣(﹣2)×( ﹣ )+ …(第一步)‎ ‎= ﹣( ﹣1)+ …(第二步)‎ ‎= + + …(第三步)‎ ‎=2…(第四步)‎ 回答下列问题:‎ ‎(1)上面解题过程中有两 处错误,第一处:是第 一 步,错误的原因是 乘 方错误 ;第二处:是第 二 步,错误的原因是 没变号 .‎ 直接写出正确的结果是   .‎ 考点: 有理数的混合运算.‎ 专题: 阅读型.‎ 分析: 根据分数乘方应分子与分母分别乘方,去括号应变号.‎ 解答: 解:原式= ﹣(﹣2)×( ﹣ )+ …(第一步),‎ ‎= +( ﹣1)+ …(第二步),‎ ‎= ﹣ + …(第三步),‎ ‎= …(第四步);‎ 故答案为:第一步,乘方错误,第二步,符号错误; .‎ 点评: 本题考查了有理数的混合运算,注意运算顺序是解题的关键.‎ ‎ ‎ ‎26.一天两名同学利用温 差测某座山峰 的高度.在山脚测得温度是8℃,在山顶测得温度是﹣1℃,已知该山区高度每增加100米,气温大约下降0.6℃,请你帮这两名同学列式计算:这个山峰的山脚距山顶的高度大约是多少米.‎ 考点: 有理数的混合运算.‎ 分析: 先列出算式,再根据有理数的混合运算进行计算即可.‎ 解答: 解:根据题意得:[8﹣(﹣1)]÷0.6×100‎ ‎=1500(米),‎ 答:这个山峰的山脚距山顶的高度大约是1500米.‎ 点评: 本题考查的是有理数的混合运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.‎ ‎  ‎ ‎27.出租车司机小李某天下午从A地出发,营运全是在东西的人民大道进行的.如果规定向东为正,向西为负,他这天营运的车次和里程如表(单位:千米):‎ 车次 ① ② ③ ④ ⑤ ⑥ ⑦‎ 里程 +15 ﹣8 +14 ﹣11 +6 ﹣12 +8‎ ‎(1)在哪次记录中距A地最远?‎ 将最后一名乘客送到目的地时,小李距出发地的距离是多少?‎ 若每千米耗油0.3L,问小李这天下午共耗油多少升.‎ 考点: 正数和负数.‎ 分析: (1)根据有理数的加法,可得和,根据绝对值的意义,可得每次行驶距出车点的距离,根据有理数的大小比较,可得答案;‎ 根据有理数的加法,可得答案;‎ ‎(3)根据单位耗油量乘以行车距离,可得答案;‎ 解答: 解:(1)第一次15(千米),‎ 第二次15﹣8=7(千米),‎ 第三次7+14=21(千米),‎ 第四次21﹣11=10(千米),‎ 第五次10+6=16(千米),‎ 第六次16﹣12=4(千米),‎ 第七次4+8=12(千米).‎ ‎21>16>15>12>10>7>4,‎ 故行驶过程中,距离出车点最远是第 3次;‎ ‎15﹣8+14﹣11+6﹣12+8=12(千米),‎ 所以将最后一名乘客送到目的地时,小李距出发地的距离是12千米;‎ ‎(3)(15+8+14+11+6+ 12+8)×0.3=22.2(升).‎ 所以小李这天下午共耗油22.2升.‎ 点评: 本题考查了正数和负数,有理数的加法运算是解题关键.‎ ‎ ‎ ‎28.计算:0.252÷(﹣ )3+[﹣32×(﹣ )2+(﹣2)3]÷4.‎ 考点: 有理数的混合运算.‎ 分析: 先算乘方,再算乘除,再算加减,有括号的先算括号里面的.‎ 解答: 解:原式= ÷(﹣ )+[﹣9× ﹣8]× ‎ ‎=﹣ +(﹣12)× ‎ ‎=﹣ ﹣3‎ ‎=﹣3 .‎ 点评: 本题考查了有理数的混合运算, 注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.‎ 七年级数学试卷 一、选择题(共10小题,每小题3分,满分30分)‎ ‎1.﹣2的相反数是(  )‎ ‎  A. B. ﹣ C.﹣2 D.2 ‎ ‎2.在0,﹣1.5,1,-2四个数中,最小的数是(  )‎ ‎  A. 0 B. 1 C. ﹣2 D.-1.5‎ ‎3.太阳与地球的距离大约是150000000千米,其中150000000可用科学记数法表示,下列正确的是(  )‎ ‎  A. 15×107 B. 0.15×109 C. 1.5×108 D. 1.5亿 ‎4.下列各组运算中,结果为负数的是(  )‎ ‎  A. ﹣(﹣3) B. ﹣|﹣3| C. ﹣(﹣2)3 D. (﹣3)×(﹣2) ‎ ‎5. 运算结果是(  )‎ ‎  A. ±3 B. -3 C. 9 D. 3‎ ‎6.若用a表示 ,则在数轴上与a-1最接近的数所表示的点是(  ) ‎ A. A B. B C. C D. D ‎7.下列各组整式中,不是同类项的是(  )‎ ‎  A. ﹣7与2.1 B.2xy与﹣5yx C. a2b与ab2 D.mn2与3n2m ‎8.下列各式计算正确的是(  )‎ ‎  A. 4m2n﹣2mn2=2mn B. ﹣2a+5b=3ab ‎  C. 4xy﹣3xy=xy D. a2+a2=a4‎ ‎9.有下列说法:①无理数是无限不循环小数;②数轴上的点与有理数一一对应;③绝对值等于本身的数是0;④一个数的平方根等于它本身的数是0,1.其中正确的个数是(  )‎ ‎ A. 1 B. 2 C. 3 D. 4‎ ‎10.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是(  )‎ ‎ ‎ ‎  A. ab>0 B. a+b<0 C.(b﹣1)(a﹣1)>0 D.(b﹣1)(a+1)>0‎ 二、填空题(共10小题,每小题3分,满分30分)‎ ‎11. 的倒数是      .‎ ‎12.16的算术平方根是      .‎ ‎13.单项式 的系数是   ,次数是  次;多项式 是   次多项式.‎ ‎14.如果代数式x=-1,y=2,则代数式6﹣2x+4xy的值为      .‎ ‎15.x的 倍与y的平方的和可表示为      .‎ ‎16.由四舍五入得到的近似数83.52万,精确到      位.‎ ‎17.已知一个正数的两个平方根分别是3a+1和a+7,这个正数是     ‎ ‎18.若m、n满足 ,则 =      .‎ ‎19.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则 =      ‎ ‎20. 甲、乙、丙三家超市为了促销一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是      . ‎ 三、解答题(共6小题,满分40分)‎ ‎21.(6分)把下列各数填在相应的表示集合的大括号内:‎ ‎ , ,0. , , ,﹣1.4, ,﹣3, ,0,10%,1.1010010001…(每两个1之间依次多一个0)‎ 整 数{ …};‎ 正分数{ …};‎ 无 理 数{ …}.  ‎ ‎22.(6分)把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来:‎ ‎3 ,﹣2.5,|﹣2|,0, ,(﹣1)2.‎ ‎ ‎ ‎23.(每小题2分,共8分)计算:‎ ‎(1)(﹣1)﹣(﹣7)+(﹣8) (2) ‎ ‎ ‎ ‎(3) ( + ﹣ )×(﹣60) (4)﹣22+ (1﹣ )2 ‎ ‎24.(6分)先化简,再求值: ,其中x=2,y=-1‎ ‎ ‎ ‎25.(6分)把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表.‎ ‎(1)用如图方式框住表中任意4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是      ,      ,      .‎ ‎(2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x的值;若不能,则说明理由 ‎ ‎26.(8分)上海股民杨先生上星期五交易结束时买进某公司股票1000股,每股50元,下表为本周内每日该股的涨跌情况(星期六、日股市休市)。‎ 星期 一 二 三 四 五 每股涨跌 3 3.5 -2 1.5 -3‎ ‎(1) 星期三收盘时,每股是多少元?‎ ‎(2) 本周内每股最高价是多少元?最低价是多少元?‎ ‎(3) 已知买进股票还要付成交金额2‰的手续费,卖出时还需要付成交额2‰的手续费和1‰交易税。如果在星期五按收盘价将全部股票卖出,他的收益情况如何?(‰是千分号)‎ ‎ ‎ ‎ ‎ 七年级数学答案 二、选择题(共10小题,每小题3分,满分30分)‎ 题号 1 2 3 4 5 6 7 8 9 10‎ 答案 D C C B D B C C A D 二、填空题(共10小题,每小题3分,满分30分)‎ ‎11. 12. 4 13. , 4; 4 ‎ ‎14. 0 15. 16. 百 ‎ ‎17. 25 18. 1 19. 2550 20. 乙超市 三、解答题(共6小题,满分40分)‎ ‎21.整 数{ , ,﹣3 , 0 …};2分 正分数{ 0. , , 10% …};2分 无 理 数{ , ,1.1010010001…(每两个1之间依次多一个0) …}.2分 ‎22. 数轴略, 3分 ‎﹣2.5< <0<(﹣1)2 <|﹣2|<3 3分 ‎23.(每小题2分,共8分)‎ ‎(1)-2 (2)-12 ‎ ‎(3)22 (4)-2.5 ‎ ‎24. = 3分 其中x=2,y=-1 原式=-1 3分 ‎25.  x+8    ,  x+16    ,   x+24   . (每空各1分,共3分) ‎ ‎ x+(x+8)+(x+16)+(x+24)=244 (2分) 解得:x=49 (1分)‎ ‎26. (1) 54.5 (1分)‎ ‎ (2)最高价是56.5元,最低价是53元 (每空2分,共4分)‎ ‎ (3)收益是2741元  (3分)‎ ‎  ‎ 莲山课件 原文地址:http://www.5ykj.com/shti/cuyi/162891.htm
查看更多

相关文章

您可能关注的文档