2019-2020学年福建省漳平市第一中学高一上学期期中考试 数学

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019-2020学年福建省漳平市第一中学高一上学期期中考试 数学

漳平一中2019-2020学年第一学期半期考 高一数学试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.‎ 注意事项:1.考生将自己的姓名、准考证号及所有的答案均填写在答题卡上.‎ ‎ 2.答题要求见答题卡上的“填涂样例”和“注意事项”.‎ 第Ⅰ卷(选择题共60分)‎ 一.选择题(共12小题,每小题5分,共60分。在每小题列出的四个选项中,只有一项符合要求)‎ 1. 已知集合,则与集合的关系是( )‎ A. ‎ B. C. D. ‎ 2. 函数的定义域是( )‎ ‎ A. B. C. D. ‎ ‎3. 下列函数中是偶函数但不是奇函数的是( )‎ ‎ A. B. C. D.‎ ‎4. 已知,则下列关系式正确的是( )‎ ‎ A. B. C. D. ‎ ‎5. 函数的零点所在的区间是( )‎ ‎ A. (-2,-1) B. (-1,0) C. (0,1) D. (1,2)‎ ‎6. 已知全集,集合,集合,则等于( )‎ ‎ A. B. C. D.‎ ‎7. 函数的大致图象可能是( )‎ ‎ A. B. C. D. ‎ ‎8. 如果函数在区间上是减函数,则实数的取值范围是( )‎ ‎ A. B. C. D. ‎ ‎9. 已知函数()的图象恒过定点,则函数的单调递增区间是( )‎ A. B. C. D. ‎ ‎10. 某市居民生活用电电价实行全市同价,并按三档累进递增。第一档:月用电量为0-200千瓦时(以下简称度),每度0.5元;第二档:月用电量超过200度但不超过400度时,超出的部分每度0.6元;第三档:月用电量超过400度时,超出的部分每度0.8元;若某户居民9月份的用电量是420度,则该用户9月份应缴电费是( )‎ A. 210元 B. 232元 C. 236元 D. 276元 11. 已知是定义在上的奇函数,且当时,,则当时,的解析式是( )‎ A. B. C. D. ‎ ‎12.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是( )‎ A. B. C. D. ‎ 第Ⅱ卷(共90分)‎ 二.填空题(本题共4个小题,每小题5分,共20分)‎ ‎13. 已知函数,则的值为__________.‎ 14. 已知定义在上的偶函数在区间上是减函数,若,则实数 的取值范围是__________.‎ 14. 若函数的值域为,则为__________. ‎ ‎16.已知函数为偶函数,且,若不相等的两正数满足,则不等式的解集为__________.  ‎ 三.解答题(本题共6小题,共70分.要求写出必要的文字说明和解题过程.)‎ ‎17.(本题满分10分)求值与化简 ‎(1) ‎ ‎(2)‎ ‎18.(本题满分12分)‎ 设集合,,‎ ‎(1)全集,求;‎ ‎(2)若,求实数的取值范围.‎ ‎ 19.(本题满分12分)已知函数为奇函数,且.‎ ‎(1)求实数的值;‎ ‎(2)判断在区间上的单调性,并用定义证明你的结论;‎ ‎(3) 求不等式的解集.‎ ‎20.(本题满分12分)某机械制造厂生产一种新型产品,生产的固定成本为20000元,每生产一件产品需增加投入成本100元。根据初步测算,当月产量是件时,总收益(单位:元)为 ,利润=总收益-总成本.‎ ‎(1)试求利润(单位:元)与(单位:件)的函数关系式;‎ ‎(2)当月产量为多少件时利润最大?最大利润是多少?‎ ‎21.(本题满分12分)设为非负实数,函数.‎ ‎(1)当时,画出函数的草图,并写出函数的单调递增区间;‎ ‎(2)若函数有且只有一个零点,求实数的取值范围.‎ ‎22.(本题满分12分)已知函数.‎ ‎(1)求在区间的值域;‎ ‎(2)函数,若对于任意,总存在,使得恒成立,求实数的取值范围.‎ 参考答案 一.选择题(每题5分)1--12 ABCBB AAADC CD 二.填空题(每题5分)13. 9 14. 15. 16. ‎ 三.解答题 ‎17.解:(1)原式=..........5分 ‎(2)原式=.......10分 ‎18.解:(1) ..........2分 ‎...................4分 (2) ‎∵ ∴.................6分 当时,..................8分 当时,依题意得,解得..........10分 综上所述,的取值范围是................12分 ‎19.解:(1)由题意,为R上奇函数,则,得,再由,得。经检验,当,时是奇函数。.................3分 (2) 由(1)得,在上单调递减。.................4分 证明如下:‎ 任取且,则 ‎,∴,,∴,即 ‎∴在上单调递减..............8分 ‎(3)∵为奇函数,∴,则原不等式化为 ‎,而由(2)得在时单调递减,且 ‎∴,即,∴‎ ‎∴原不等式的解集为..............12分 ‎20.解:(1)依题意,‎ 当时............2分 当时..............4分 ‎∴...............6分 ‎(2)当时,∴当....8分 当时,..............10分 ‎∴当............12分 ‎21.解:(1)函数的草图如右.‎ ‎ ....................4分 由图可知函数的增区间为................6分 (2) 因为,而则。‎ 若时有唯一零点。符合题意................8分 若时在上单调递增,,∴在上有唯一零点。而在上单调递增,在上单调递减。由题意,要使在R上有唯一零点,则在上没有零点,故在上的最大值 ‎,∴.‎ 综合上述,的取值范围是...............12分 ‎22.解:(1)易知在[0,1]上单调递增,∴‎ ‎∴值域为...........4分 ‎(2)设,‎ ‎,易知............6分 令,则 ‎∵在上递减,在上递增.‎ ‎∴.即............9分 ‎ 由题意知,,即,∴.............12分
查看更多

相关文章

您可能关注的文档