- 2021-04-27 发布 |
- 37.5 KB |
- 35页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
三年高考2019高考物理试题分项版解析 专题20 电学计算题(含解析)
专题20 电学计算题 【2018高考真题】 1.如图所示,真空中四个相同的矩形匀强磁场区域,高为4d,宽为d,中间两个磁场区域间隔为2d,中轴线与磁场区域两侧相交于O、O′点,各区域磁感应强度大小相等.某粒子质量为m、电荷量为+q,从O沿轴线射入磁场.当入射速度为v0时,粒子从O上方处射出磁场.取sin53°=0.8,cos53°=0.6. (1)求磁感应强度大小B; (2)入射速度为5v0时,求粒子从O运动到O′的时间t; (3)入射速度仍为5v0,通过沿轴线OO′平移中间两个磁场(磁场不重叠),可使粒子从O运动到O′的时间增加Δt,求Δt的最大值. 【来源】2018年全国普通高等学校招生统一考试物理(江苏卷) 【答案】 (1) (2) (3) 【解析】(1)粒子圆周运动的半径 由题意知,解得 (3)将中间两磁场分别向中央移动距离x 粒子向上的偏移量y=2r(1–cosα)+xtanα 由y≤2d,解得 35 则当xm= 时,Δt有最大值 粒子直线运动路程的最大值 增加路程的最大值 增加时间的最大值 点睛:本题考查带电粒子在组合磁场中的运动,第(1)小题先确定粒子圆周运动的半径,再根据洛伦兹力提供向心力列式求解;第(2)小题解答关键是定圆心、画轨迹,分段分析和计算;第(3)小题求Δt的最大值,关键是要注意带电粒子在磁场中运动的时间不变和速度大小不变,所以中间磁场移动后改变的是粒子在无磁场区域运动的倾斜轨迹的长度,要使Δt最大,则要倾斜轨迹最长,所以粒子轨迹跟中间磁场的上边相切时运动时间最长,再根据运动的对称性列式求解。 2.如图所示,两条平行的光滑金属导轨所在平面与水平面的夹角为,间距为d.导轨处于匀强磁场中,磁感应强度大小为B,方向与导轨平面垂直.质量为m的金属棒被固定在导轨上,距底端的距离为s,导轨与外接电源相连,使金属棒通有电流.金属棒被松开后,以加速度a沿导轨匀加速下滑,金属棒中的电流始终保持恒定,重力加速度为g.求下滑到底端的过程中,金属棒 (1)末速度的大小v; (2)通过的电流大小I; (3)通过的电荷量Q. 【来源】2018年全国普通高等学校招生统一考试物理(江苏卷) 【答案】 (1) (2)(3) 【解析】(1)匀加速直线运动v2=2as 解得 (2)安培力F安=IdB 金属棒所受合力 牛顿运动定律F=ma 解得 (3)运动时间 电荷量Q=It 35 解得 点睛:本题是通电金属棒在磁场中匀加速运动的问题,考生易误认为是电磁感应问题而用电磁感应规律求解。 3.(1)静电场可以用电场线和等势面形象描述。 a.请根据电场强度的定义和库仑定律推导出点电荷Q的场强表达式; b.点电荷的电场线和等势面分布如图所示,等势面S₁、S₂到点电荷的距离分别为r₁、r₂。我们知道,电场线的疏密反映了空间区域电场强度的大小。请计算S₁、S₂上单位面积通过的电场线条数之比N1/N2。 (2)观测宇宙中辐射电磁波的天体,距离越远单位面积接收的电磁波功率越小,观测越困难。为了收集足够强的来自天体的电磁波,增大望远镜口径是提高天文观测能力的一条重要路径。2016年9月25日,世界上最大的单口径球面射电望远镜FAST在我国贵州落成启用,被誉为“中国天眼”。FAST直径为500 m,有效提高了人类观测宇宙的精度和范围。 a.设直径为100 m的望远镜能够接收到的来自某天体的电磁波功率为P₁,计算FAST能够接收到的来自该天体的电磁波功率P₂; b.在宇宙大尺度上,天体的空间分布是均匀的,仅以辐射功率为P的同类天体为观测对象,设直径为100 m望远镜能够观测到的此类天体数目是N0,计算FAST能够观测到的此类天体数目N。 【来源】2018年全国普通高等学校招生统一考试物理(北京卷) 【答案】 (1)a. b.(2)a. b. 【解析】(1)a.在距Q为r的位置放一电荷量为q的检验电荷 根据库仑定律检验电荷受到的电场力 根据电场强度的定义 得 35 b.穿过每个面的电场线的总条数是相等的,若面积大,则单位面积上分担的条数就少, 故穿过两等势面单位面积上的电场线条数之比 可得L=5L0 则 故本题答案是:(1)a ; b. (2)a ; b. 点睛:本题是一道信息题,要读懂题目中所描述的物理情景,然后结合物理知识求解,在电场线条数一定的情况下,圆的半径越大,则单位面积上的条数就越少;同样要知道地球上不同望远镜观测同一天体,单位面积上接收的功率应该相同,要借助于这些条件处理问题。 4.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电。改变变阻器R的阻值,路端电压U与电流I均随之变化。 (1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义。 (2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率; b.请推导该电源对外电路能够输出的最大电功率及条件。 35 (3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和。 【来源】2018年全国普通高等学校招生统一考试物理(北京卷) 【答案】 (1)U–I图象如图所示: 图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流 (2)a如图所示: b. (3)见解析 【解析】(1)U–I图像如图所示, 其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流 (2)a.如图所示 35 本题答案是:(1)U–I图像如图所示, 其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流 (2)a.如图所示 35 当外电路电阻R=r时,电源输出的电功率最大,为 (3) 点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R=r时,输出功率最大。 5.一足够长的条状区域内存在匀强电场和匀强磁场,其在xoy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xoy平面;磁场的上、下两侧为电场区域,宽度均为,电场强度的大小均为E,方向均沿x轴正方向;M、N为条形区域边界上的两点,它们的连线与y轴平行。一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出。不计重力。 (1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M点射入时速度的大小; (3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间。 【来源】2018年普通高等学校招生全国统一考试物理(全国II卷) 【答案】 (1)轨迹图如图所示: (2) (3) ; 【解析】试题分析:(1)粒子在电场中做类平抛,然后进入磁场做圆周运动,再次进入电场做类平抛运动,结合相应的计算即可画出轨迹图 (2)在电场中要分两个方向处理问题,一个方向做匀速运动,一个方向做匀加速运动。 35 (3)在磁场中的运动关键是找到圆心,求出半径,结合向心力公式求解。 (1)粒子运动的轨迹如图(a)所示。(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称) (2)粒子从电场下边界入射后在电场中做类平抛运动。设粒子从M点射入时速度的大小为v0,在下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为(见图(b)),速度沿电场方向的分量为v1,根据牛顿第二定律有 qE=ma ① 由几何关系得 ⑥ 联立①②③④⑤⑥式得 ⑦ (3)由运动学公式和题给数据得 ⑧ 联立①②③⑦⑧式得 35 ⑨ 设粒子由M点运动到N点所用的时间为,则 ⑩ 式中T是粒子在磁场中做匀速圆周运动的周期, ⑪ 由③⑦⑨⑩⑪式得 ⑫ 故本题答案是:(1)轨迹图如图所示: (2) (3) ; 点睛:在复合场中的运动要分阶段处理,每一个运动建立合理的公式即可求出待求的物理量。 6.真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置。图1是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l的两条平行光滑金属导轨,电阻忽略不计,ab和cd是两根与导轨垂直,长度均为l,电阻均为R的金属棒,通过绝缘材料固定在列车底部,并与导轨良好接触,其间距也为l,列车的总质量为m。列车启动前,ab、cd处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向下,如图1所示,为使列车启动,需在M、N间连接电动势为E的直流电源,电源内阻及导线电阻忽略不计,列车启动后电源自动关闭。 (1)要使列车向右运行,启动时图1中M、N哪个接电源正极,并简要说明理由; 35 (2)求刚接通电源时列车加速度a的大小; (3)列车减速时,需在前方设置如图2所示的一系列磁感应强度为B的匀强磁场区域,磁场宽度和相邻磁场间距均大于l。若某时刻列车的速度为,此时ab、cd均在无磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场? 【来源】2018年全国普通高等学校招生同一考试理科综合物理试题(天津卷) 【答案】 (1)M接电源正极,理由见解析(2)(3)若恰好为整数,设其为n,则需设置n块有界磁场,若不是整数,设的整数部分为N,则需设置N+1块有界磁场 设两根金属棒所受安培力之和为F,有F=BIl③ 根据牛顿第二定律有F=ma④,联立①②③④式得⑤ (3)设列车减速时,cd进入磁场后经时间ab恰好进入磁场,此过程中穿过两金属棒与导轨所围回路的磁通量的变化为,平均感应电动势为,由法拉第电磁感应定律有⑥,其中⑦; 设回路中平均电流为,由闭合电路欧姆定律有⑧ 设cd受到的平均安培力为,有⑨ 以向右为正方向,设时间内cd受安培力冲量为,有⑩ 同理可知,回路出磁场时ab受安培力冲量仍为上述值,设回路进出一块有界磁场区域安培力冲量为,有⑪ 设列车停下来受到的总冲量为,由动量定理有⑫ 联立⑥⑦⑧⑨⑩⑪⑫式得⑬ 35 讨论:若恰好为整数,设其为n,则需设置n块有界磁场,若不是整数,设的整数部分为N,则需设置N+1块有界磁场。⑭. 【点睛】如图所示,在电磁感应中,电量q与安培力的冲量之间的关系,如图所示,以电量为桥梁,直接把图中左右两边的物理量联系起来,如把导体棒的位移 和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法直接使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙,这种题型难度最大。 7.如图所示,在水平线ab下方有一匀强电场,电场强度为E,方向竖直向下,ab的上方存在匀强磁场,磁感应强度为B,方向垂直纸面向里,磁场中有一内、外半径分别为R、的半圆环形区域,外圆与ab的交点分别为M、N。一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出,不计粒子重力。 (1)求粒子从P到M所用的时间t; (2)若粒子从与P同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出,粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度的大小。 【来源】2018年全国普通高等学校招生统一考试理科综合物理试题(天津卷) 【答案】 (1)(2) 【解析】试题分析:粒子在磁场中以洛伦兹力为向心力做圆周运动,在电场中做初速度为零的匀加速直线运动,据此分析运动时间;粒子进入匀强磁场后做匀速圆周运动,当轨迹与内圆相切时,所有的时间最短,粒子从Q射出后在电场中做类平抛运动,在电场方向上的分运动和从P 35 释放后的运动情况相同,所以粒子进入磁场时沿竖直方向的速度同样为v,结合几何知识求解. (1)设粒子在磁场中运动的速度大小为v,所受洛伦兹力提供向心力,有① 设粒子进入磁场时速度方向与ab的夹角为θ,即圆弧所对圆心角的一半,由几何关系可知⑦; 粒子从Q射出后在电场中做类平抛运动,在电场方向上的分运动和从P释放后的运动情况相同,所以粒子进入磁场时沿竖直方向的速度同样为v,在垂直于电场方向的分速度始终为,由运动的合成和分解可知⑧ 联立①⑥⑦⑧式得⑨. 【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径. 8.如图,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直。已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l。不计重力影响和离子间的相互作用。求: 35 (1)磁场的磁感应强度大小; (2)甲、乙两种离子的比荷之比。 【来源】2018年全国普通高等学校招生统一考试物理(全国III卷) 【答案】 (1)(2) 【解析】试题分析 本题主要考查带电粒子在电场中的加速、在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决实际问题的的能力。 解析(1)设甲种离子所带电荷量为q1、质量为m1,在磁场中做匀速圆周运动的半径为R1,磁场的磁感应 (2)设乙种离子所带电荷量为q2、质量为m2,射入磁场的速度为v2,在磁场中做匀速圆周运动的半径为R2。同理有 ⑤ ⑥ 由题给条件有 ⑦ 由①②③⑤⑥⑦式得,甲、乙两种离子的比荷之比为 ⑧ 点睛 此题与2013年北京理综卷第23 35 题情景类似,都可以看作是质谱仪模型。解答所用的知识点和方法类似。 9.如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E,在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。一个氕核11H和一个氘核21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向。已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场。11H的质量为m,电荷量为q不计重力。求 (1)11H第一次进入磁场的位置到原点O的距离 (2)磁场的磁感应强度大小 (3)12H第一次离开磁场的位置到原点O的距离 【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷) 【答案】 (1);(2);(3) ① ② 由题给条件,进入磁场时速度的方向与x轴正方向夹角。进入磁场时速度的y分量的大小为 ③ 联立以上各式得 ④ (2)在电场中运动时,由牛顿第二定律有 ⑤ 设进入磁场时速度的大小为,由速度合成法则有 ⑥ ⑩ 由牛顿第二定律有 ⑪ 设第一次射入磁场时的速度大小为,速度的方向与x轴正方向夹角为,入射点到原点的距离为,在电场中运动的时间为。由运动学公式有 ⑫ ⑬ ⑭ ⑮ 联立以上各式得 ,, ⑯ 35 设在磁场中做圆周运动的半径为,由⑦⑯式及粒子在匀强磁场中做圆周运动的半径公式得 ⑲ 【点睛】此题与2004年全国理综卷第25题情景类似,都是带电粒子在匀强电场中类平抛运动后进入匀强磁场中做匀速圆周运动,且都是在第一象限和第二象限设置了竖直向下的匀强电场,在第三象限和第四象限设置了方向垂直纸面向外的匀强磁场,解答需要的知识都是带电粒子在匀强电场中的类平抛运动规律和洛伦兹力等于向心力、几何关系等知识点。带电粒子在匀强电场中的类平抛运动和在匀强磁场中的匀速圆周运动是教材例题和练习中的常见试题,此题可认为是由两个课本例题或习题组合而成。 【2017高考真题】 1.【2017·新课标Ⅲ卷】(12分)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力) (1)粒子运动的时间; (2)粒子与O点间的距离。 【答案】(1) (2) 【解析】(1)在匀强磁场中,带电粒子做圆周运动。设在x≥0区域,圆周半径为R1;在x<0区域,圆周半径为R2。由洛伦兹力公式及牛顿定律得 ① ② 粒子速度方向转过180°时,所用时间t1为③ 粒子再转过180°时,所用时间t2为④ 联立①②③④式得,所求时间为⑤ (2)由几何关系及①②式得,所求距离为⑥ 【考点定位】带电粒子在磁场中的运动 【名师点睛】对于带电粒子在磁场中运动问题,解题时常要分析带电粒子受到的洛伦兹力的情况,找到粒子做圆周运动的圆心及半径,画出运动轨迹可以使运动过程清晰明了,同时要善于运用几何知识帮助分析和求解。 2.【2017·新课标Ⅱ卷】(20分)如图,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场。自该区域上方的A点将质量为m、电荷量分别为q和–q(q>0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。小球在重力作用下进入电场区域,并从该区域的下边界离开。已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N 35 刚离开电场时动能的1.5倍。不计空气阻力,重力加速度大小为g。求 (1)M与N在电场中沿水平方向的位移之比; (2)A点距电场上边界的高度; (3)该电场的电场强度大小。 【答案】(1)3:1 (2) (3) 联立①②③解得:④ (2)设A点距离电场上边界的高度为h,小球下落h时在竖直方向的分速度为vy,则; ⑤ ⑥ 因为M在电场中做匀加速直线运动,则 ⑦ 由已知条件:Ek1=1.5Ek2 联立④⑤⑥⑦⑧⑨⑩⑪⑫解得: 【考点定位】带电小球在复合场中的运动;动能定理 【名师点睛】此题是带电小球在电场及重力场的复合场中的运动问题;关键是分析小球的受力情况,分析小球在水平及竖直方向的运动性质,搞清物理过程;灵活选取物理规律列方程。 3.【2017·江苏卷】(16分)一台质谱仪的工作原理如图所示.大量的甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经过加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m和m,图中虚线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用. (1)求甲种离子打在底片上的位置到N点的最小距离x; (2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d; (3)若考虑加速电压有波动,在()到()之间变化,要使甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件. 【答案】(1) (2) (3) (3)设乙种离子在磁场中的运动半径为r2 r1的最小半径 35 r2 的最大半径 由题意知 2r1min–2r2max >L,即 解得 【考点定位】带电粒子在组合场中的运动 【名师点睛】本题考查带电粒子在匀强磁场中的运动,对此类问题主要是画出粒子运动的轨迹,分析粒子可能的运动情况,找出几何关系,有一定的难度. 4.【2017·天津卷】(18分)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ现象存在沿y轴负方向的匀强电场,如图所示。一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍。粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。不计粒子重力,问: (1)粒子到达O点时速度的大小和方向; (2)电场强度和磁感应强度的大小之比。 【答案】(1),方向与x轴方向的夹角为45°角斜向上 (2) 【解析】(1)粒子在电场中由Q到O做类平抛运动,设O点速度v与+x方向夹角为α,Q点到x轴的距离为L,到y轴的距离为2L,粒子的加速度为a,运动时间为t,根据类平抛运动的规律,有: x方向: y方向: 粒子到达O点时沿y轴方向的分速度为: 又: 解得:,即,粒子到达O点时速度方向与x轴方向的夹角为45°角斜向上。 整理可得: 35 【考点定位】带电粒子在复合场中的运动 【名师点睛】本题难度不大,但需要设出的未知物理量较多,容易使学生感到混乱,要求学生认真规范作答,动手画图。 5.【2017·天津卷】(20分)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。首先开关S接1,使电容器完全充电。然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。问: (1)磁场的方向; (2)MN刚开始运动时加速度a的大小; (3)MN离开导轨后电容器上剩余的电荷量Q是多少。 【答案】(1)磁场的方向垂直于导轨平面向下 (2) (3) (3)电容器放电前所带的电荷量 开关S接2后,MN开始向右加速运动,速度达到最大值vm时,MN上的感应电动势: 最终电容器所带电荷量 设在此过程中MN的平均电流为,MN上受到的平均安培力: 由动量定理,有: 又: 整理的:最终电容器所带电荷量 【考点定位】电磁感应现象的综合应用,电容器,动量定理 【名师点睛】本题难度较大,尤其是最后一个小题,给学生无从下手的感觉:动量定理的应用是关键。 6.【2017·江苏卷】(15分) 如图所示,两条相距d的平行金属导轨位于同一水平面内,其右端接一阻值为R的电阻.质量为m的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ的磁感应强度大小为B、方向竖直向下.当该磁场区域以速度v0匀速地向右扫过金属杆后,金属杆的速度变为v.导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求: (1)MN刚扫过金属杆时,杆中感应电流的大小l; (2)MN刚扫过金属杆时,杆的加速度大小a; (3)PQ刚要离开金属杆时,感应电流的功率P. 35 【考点定位】电磁感应 【名师点睛】本题的关键在于导体切割磁感线产生电动势E=Blv,切割的速度(v)是导体与磁场的相对速度,分析这类问题,通常是先电后力,再功能. 7.【2017·北京卷】(20分)发电机和电动机具有装置上的类似性,源于它们机理上的类似性。直流发电机和直流电动机的工作原理可以简化为如图1、图2所示的情景。 在竖直向下的磁感应强度为B的匀强磁场中,两根光滑平行金属轨道MN、PQ固定在水平面内,相距为L,电阻不计。电阻为R的金属导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好,以速度v(v平行于MN)向右做匀速运动。 图1轨道端点MP间接有阻值为r的电阻,导体棒ab受到水平向右的外力作用。图2轨道端点MP间接有直流电源,导体棒ab通过滑轮匀速提升重物,电路中的电流为I。 (1)求在Δt时间内,图1“发电机”产生的电能和图2“电动机”输出的机械能。 (2)从微观角度看,导体棒ab中的自由电荷所受洛伦兹力在上述能量转化中起着重要作用。为了方便,可认为导体棒中的自由电荷为正电荷。 a.请在图3(图1的导体棒ab)、图4(图2的导体棒ab)中,分别画出自由电荷所受洛伦兹力的示意图。 b.我们知道,洛伦兹力对运动电荷不做功。那么,导体棒ab中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请以图2“电动机”为例,通过计算分析说明。 【答案】(1) (2)a.如图3、图4 b.见解析 【解析】(1)图1中,电路中的电流 棒ab受到的安培力F1=BI1L 在Δt时间内,“发电机”产生的电能等于棒ab克服安培力做的功 图2中,棒ab受到的安培力F2=BIL 在Δt时间内,“电动机”输出的机械能等于安培力对棒ab做的功 (2)a.图3中,棒ab向右运动,由左手定则可知其中的正电荷受到b→a方向的洛伦兹力,在该洛伦兹力作用下,正电荷沿导体棒运动形成感应电流,有沿b→a方向的分速度,受到向左的洛伦兹力作用;图4中,在电源形成的电场作用下,棒ab中的正电荷沿a→b方向运动,受到向右的洛伦兹力作用,该洛伦兹力使导体棒向右运动,正电荷具有向右的分速度,又受到沿b→a方向的洛伦兹力作用。如图3、图4。 【考点定位】闭合电路欧姆定律、法拉第电磁感应定律、左手定则、功能关系 【名师点睛】洛伦兹力永不做功,本题看似洛伦兹力做功,实则将两个方向的分运动结合起来,所做正、负功和为零。 35 【2016高考真题】 1.(16分)【2016·北京卷】如图所示,质量为m、电荷量为q的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动。不计带电粒子所受重力。 (1)求粒子做匀速圆周运动的半径R和周期T; (2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小。 【答案】(1) (2) 【考点定位】带电粒子在复合场中的运动 【方法技巧】带电粒子在复合场中运动问题的分析思路 1.正确的受力分析:除重力、弹力和摩擦力外,要特别注意电场力和磁场力的分析。 2.正确分析物体的运动状态:找出物体的速度、位置及其变化特点,分析运动过程。如果出现临界状态,要分析临界条件。带电粒子在复合场中做什么运动,取决于带电粒子的受力情况。 (1)当粒子在复合场内所受合力为零时,做匀速直线运动(如速度选择器)。 (2)当带电粒子所受的重力与电场力等值反向,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。 (3)当带电粒子所受的合力是变力,且与初速度方向不在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连续通过几个情况不同的复合场区,因此粒子的运动情况也发生相应的变化,其运动过程也可能由几种不同的运动阶段所组成。 2.(18分)【2016·北京卷】如图所示,电子由静止开始经加速电场加速后,沿平行于版面的方向射入偏转电场,并从另一侧射出。已知电子质量为m,电荷量为e,加速电场电压为。偏转电场可看作匀强电场,极板间电压为U,极板长度为L,板间距为d。 (1)忽略电子所受重力,求电子射入偏转电场时的初速度v0和从电场射出时沿垂直板面方向的偏转距离Δy; (2)分析物理量的数量级,是解决物理问题的常用方法。在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因。已知,,,,。 (3)极板间既有静电场也有重力场。电势反映了静电场各点的能的性质,请写出电势的定义式。类比电势的定义方法,在重力场中建立“重力势”的概念,并简要说明电势和“重力势”的共同特点。 【答案】(1) (2)不需要考虑电子所受的重力 (3) 电势和重力势都是反映场的能的性质的物理量,仅仅由场自身的因素决定。 电场力 35 由于,因此不需要考虑电子所受重力 (3)电场中某点电势定义为电荷在该点的电势能与其电荷量q的比值,即 由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能与其质量m的比值,叫做“重力势”,即 电势和重力势都是反映场的能的性质的物理量,仅由场自身的因素决定 【考点定位】带电粒子在电场中的偏转 【方法技巧】带电粒子在电场中偏转问题,首先要对带电粒子在这两种情况下进行正确的受力分析,确定粒子的运动类型。解决带电粒子垂直射入电场的类型的题,应用平抛运动的规律进行求解。此类型的题要注意是否要考虑带电粒子的重力,原则是:除有说明或暗示外,对基本粒子(例如电子,质子、α粒子、离子等)一般不考虑重力;对带电微粒(如液滴、油滴、小球、尘埃等)一般要考虑重力。 3.【2016·海南卷】如图,A、C两点分别位于x轴和y轴上,∠OCA=30°,OA的长度为L。在△OCA区域内有垂直于xOy平面向里的匀强磁场。质量为m、电荷量为q的带正电粒子,以平行于y轴的方向从OA边射入磁场。已知粒子从某点射入时,恰好垂直于OC边射出磁场,且粒子在磁场中运动的时间为t0。不计重力。 (1)求磁场的磁感应强度的大小; (2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和; (3)若粒子从某点射入磁场后,其运动轨迹与AC边相切,且在磁场内运动的时间为,求粒子此次入射速度的大小。 【答案】(1) (2)2t0 (3) (2)设粒子从OA边两个不同位置射入磁场,能从OC边上的同一点P射出磁场,粒子在磁场中运动的轨迹如图(a)所示。设两轨迹所对应的圆心角分别为θ1和θ2。由几何关系有θ1=180°–θ2⑤ 粒子两次在磁场中运动的时间分别为t1与t2,则t1+t2==2t0⑥ (3)如图(b),由题给条件可知,该粒子在磁场区域中的轨迹圆弧对应的圆心角为150°。设O'为圆弧的圆 【考点定位】带电粒子在磁场中的运动 【名师点睛】对于带电粒子在磁场中运动类型,要画出轨迹,善于运用几何知识帮助分析和求解,这是轨迹问题的解题关键。 4.【2016·江苏卷】(16分)回旋加速器的工作原理如题15-1图所示,置于真空中的D形金属盒半径为R,两盒间狭缝的间距为d,磁感应强度为B的匀强磁场与盒面垂直,被加速粒子的质量为m,电荷量为+q 35 ,加在狭缝间的交变电压如题15-2图所示,电压值的大小为U0.周期T=.一束该种粒子在t=0~时间内从A处均匀地飘入狭缝,其初速度视为零.现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用.求: (1)出射粒子的动能; (2)粒子从飘入狭缝至动能达到所需的总时间; (3)要使飘入狭缝的粒子中有超过99%能射出,d应满足的条件. 【答案】(1)(2)(3) 【解析】(1)粒子运动半径为R时 且 解得 (2)粒子被加速n次达到动能Em,则Em=nqU0 则所占的比例为 35 由,解得. 【考点定位】回旋加速器、带电粒子在电磁场中的运动 【方法技巧】考查回旋加速器的原理,能获得的最大速度对应最大的轨道半径,即D形盒的半径,粒子在加速器运动的时间分两部分,一是在磁场中圆周运动的时间,二是在电场中的匀加速运动时间,把加速过程连在一起就是一匀加速直线运动。 5.【2016·上海卷】(14分)如图,一关于y轴对称的导体轨道位于水平面内,磁感应强度为B的匀强磁场与平面垂直。一足够长,质量为m的直导体棒沿x轴方向置于轨道上,在外力F作用下从原点由静止开始沿y轴正方向做加速度为a的匀加速直线运动,运动时棒与x轴始终平行。棒单位长度的电阻为ρ,与电阻不计的轨道接触良好,运动中产生的热功率随棒位置的变化规律为P=ky(SI)。求: (1)导体轨道的轨道方程y=f(x); (2)棒在运动过程中受到的安培力Fm随y的变化关系; (3)棒从y=0运动到y=L过程中外力F的功。 【答案】(1) (2) (3) 【解析】(1)设棒运动到某一位置时与轨道接触点的坐标为(±),安培力的功率 棒做匀加速运动 代入前式得 35 【考点定位】安培力、功率、匀变速直线运动规律、动能定理 【方法技巧】根据安培力的功率,匀变速直线运动位移速度关系,导出轨道的轨道方程和安培力随y的变化关系;通过动能定理计算棒运动过程中外力做的功。 6.【2016·天津卷】(18分)如图所示,空间中存在着水平向右的匀强电场,电场强度大小为,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B=0.5 T。有一带正电的小球,质量m=1×10–6 kg,电荷量q=2×10–6 C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10 m/s2。求: (1)小球做匀速直线运动的速度v的大小和方向; (2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t。 【答案】(1)20 m/s,与电场方向夹角为60° (2)3.5 s 【解析】(1)小球匀速直线运动时受力如图,其所受的三个力在同一平面内,合力为零,有 qvB=① 代入数据解得v=20 m/s② 35 速度v的方向与电场E的方向之间的夹角θ满足tan θ=③ a与mg的夹角和v与E的夹角相同,均为θ,又tan θ=⑧ 联立④⑤⑥⑦⑧式,代入数据解得t=2s=3.5 s⑨ 解法二: 撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运送没有影响,以P点为坐标原点,竖直向上为正方向,小球在竖直方向上做匀减速运动,其初速度为vy=vsin θ⑤ 若使小球再次穿过P点所在的电场线,仅需小球的竖直方向上分位移为零,则有vyt–gt2=0⑥ 联立⑤⑥式,代入数据解得t=2s=3.5 s⑦ 【考点定位】物体的平衡、牛顿运动定律的应用、平抛运动 【名师点睛】此题是带电粒子在复合场中的运动问题,主要考察物体的平衡、牛顿运动定律的应用、平抛运动等知识;关键是要知道物体做匀速直线运动时,物体所受的重力、洛伦兹力和电场力平衡;撤去磁场后粒子所受重力和电场力都是恒力,将做类平抛运动;知道了物体的运动性质才能选择合适的物理规律列出方程求解。 7.【2016·天津卷】(20分)电磁缓速器是应用于车辆上以提高运行安全性的辅助制动装置,其工作原理是利用电磁阻尼作用减缓车辆的速度。电磁阻尼作用可以借助如下模型讨论:如图所示,将形状相同的两根平行且足够长的铝条固定在光滑斜面上,斜面与水平方向夹角为θ。一质量为m的条形磁铁滑入两铝条间,恰好匀速穿过,穿过时磁铁两端面与两铝条的间距始终保持恒定,其引起电磁感应的效果与磁铁不动、铝条相对磁铁运动相同。磁铁端面是边长为d的正方形,由于磁铁距离铝条很近,磁铁端面正对两铝条区域的磁场均可视为匀强磁场,磁感应强度为B,铝条的高度大于d,电阻率为ρ。为研究问题方便,铝条中只考虑与磁铁正对部分的电阻和磁场,其他部分电阻和磁场可忽略不计,假设磁铁进入铝条间以后,减少的机械能完全转化为铝条的内能,重力加速度为g。 35 (1)求铝条中与磁铁正对部分的电流I; (2)若两铝条的宽度均为b,推导磁铁匀速穿过铝条间时速度v的表达式; (3)在其他条件不变的情况下,仅将两铝条更换为宽度b'>b的铝条,磁铁仍以速度v进入铝条间,试简要分析说明磁铁在铝条间运动时的加速度和速度如何变化。 【答案】(1) (2)v= (3)见解析 【解析】(1)磁铁在铝条间运动时,两根铝条受到的安培力大小相等均为F安,有 F安=IdB① 磁铁受到沿斜面向上的作用力为F,其大小有 F=2F安② 磁铁匀速运动时受力平衡,则有F–mgsin θ=0③ 联立①②③式可得I=④ (2)磁铁穿过铝条时,在铝条中产生的感应电动势为E,有E=Bdv⑤ 铝条与磁铁正对部分的电阻为R,由电阻定律有R=ρ⑥ 由欧姆定律有I=⑦ 联立④⑤⑥⑦式可得 v=⑧ 35 度与所受到的合力成正比,磁铁的加速度逐渐减小。综上所述,磁铁做加速度逐渐减小的减速运动。直到F'=mgsin θ时,磁铁重新达到平衡状态,将再次以较小的速度匀速下滑。 【考点定位】安培力、物体的平衡、电阻定律、欧姆定律 【名师点睛】此题以电磁缓冲器为背景设置题目,综合考查了安培力、物体的平衡、电阻定律及欧姆定律等知识点,要求学生首先理解题意,抽象出物理模型,选择适当的物理规律列出方程求解;此题综合性较强,能较好地考查考生综合分析问题与解决问题的能力。 8.【2016·四川卷】(19分)如图所示,图面内有竖直线DD',过DD'且垂直于图面的平面将空间分成I、II两区域。区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B(图中未画出);区域II有固定在水平面上高、倾角的光滑绝缘斜面,斜面顶端与直线DD'距离,区域II可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD'上,距地面高。零时刻,质量为m、带电量为q的小球P在K点具有大小、方向与水平面夹角的速度。在区域I内做半径的匀速圆周运动,经C点水平进入区域II。某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇。小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响。l已知,g为重力加速度。 (1)求匀强磁场的磁感应强度B的大小; (2)若小球A、P在斜面底端相遇,求释放小球A的时刻tA; (3)若小球A、P在时刻(β为常数)相遇于斜面某处,求此情况下区域II的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向。 【答案】(1);(2)(3)场强极小值为;场强极大值为 35 ,方向竖直向上。 【解析】(1)由题知,小球P在区域Ⅰ内做匀速圆周运动,有① 代入数据解得② (3)设所求电场方向向下,在t'A时刻释放小球A,小球P在区域Ⅱ运动加速度为aP,有 ⑧ ⑨ ⑩ 联立相关方程解得 对小球P的所有运动情形讨论可得 由此可得场强极小值为;场强极大值为,方向竖直向上。 考点:平抛运动;圆周运动;牛顿第二定律的应用 【名师点睛】此题是力、电、磁及运动大拼盘,综合考查带电粒子在磁场中及电场中的运动—圆周运动以及平抛运动和下斜面上的匀加速运动等问题;解题时要能把这些复杂的物理过程分解为一个一个的小过程,然后各个击破;此题是有一定难度的;考查学生综合分析问题,解决问题的能力. 9.【2016·全国新课标Ⅱ卷】(12分)如图,水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上。t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动,t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。重力加速度大小为g。求: 35 (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值。 【答案】(1) (2) 因金属杆做匀速运动,由牛顿运动定律得F–μmg–f=0⑦ 联立④⑤⑥⑦式得R=⑧ 【考点定位】电磁感应定律、牛顿第二定律 【名师点睛】此题是法拉第电磁感应定律与牛顿第二定律的综合应用问题;解题时要认真分析物理过程,分析金属棒的受力情况,选择合适的物理规律列出方程求解;还要抓住金属板的匀速运动状态列方程;此题难度不大。 10.【2016·浙江卷】(20分)小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50 m,倾角θ=53°,导轨上端串接一个R=0.05 Ω的电阻。在导轨间长d=0.56 m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0 T。质量m=4.0 kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连。CD棒的初始位置与磁场区域的下边界相距s=0.24 m。一位健身者用恒力F=80 N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直。当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g=10 m/s2,sin 53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量)。求 (1)CD棒进入磁场时速度v的大小; (2)CD棒进入磁场时所受的安培力FA的大小; (3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q。 35 【答案】(1)2.4 m/s (2)48 N (3)64 J 26.88 J 【解析】(1)由牛顿定律① 在磁场中运动时间⑨ 焦耳热⑩ 【考点定位】法拉第电磁感应定律;牛顿第二定律;功 【名师点睛】此题是关于电磁感应现象中的力及能量的问题。解题时要认真分析物理过程,搞清物体的受力情况及运动情况,并能选择合适的物理规律列出方程解答;此题难度中等,意在考查学生综合运用物理规律解题的能力。 11.【2016·浙江卷】(22分)为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”。在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转。 扇形聚焦磁场分布的简化图如图所示,圆心为O的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布。峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B,谷区内没有磁场。质量为m,电荷量为q的正离子,以不变的速率v旋转,其闭合平衡轨道如图中虚线所示。 (1)求闭合平衡轨道在峰区内圆弧的半径r,并判断离子旋转的方向是顺时针还是逆时针; (2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T; 35 (3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B' ,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B'和B的关系。已知:sin(α±β )=sin αcos β±cos αsin β,cosα=1–2 【答案】(1) 旋转方向为逆时针方向 (2) (3) 【解析】(1)封区内圆弧半径① 旋转方向为逆时针方向② (2)由对称性,封区内圆弧的圆心角③ 每个圆弧的长度④ 每段直线长度⑤ 周期⑥ 35 代入得⑫ 【考点定位】带电粒子在匀强磁场中的运动 【名师点睛】此题是关于带电粒子在匀强磁场中的运动问题。解题时要分析粒子受到的洛伦兹力的情况,找到粒子做圆周运动的圆心及半径,画出几何图形,并借助与几何关系分析解答。此题有一定的难度,考查学生的综合能力。 12.【2016·全国新课标Ⅲ卷】如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B1随时间t的变化关系为,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里。某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过MN,此后向右做匀速运动。金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。求 (1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值; (2)在时刻t(t>t0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小。 【答案】(1)(2) 【解析】在金属棒未越过MN之前,t时刻穿过回路的磁通量为① 设在从t时刻到的时间间隔内,回路磁通量的变化量为,流过电阻R的电荷量为 35 (2)当时,金属棒已越过MN,由于金属棒在MN右侧做匀速运动,有⑦ 式中f是外加水平恒力,F是匀强磁场施加的安培力。设此时回路中的电流为I,F的大小为⑧ 此时金属棒与MN之间的距离为⑨ 匀强磁场穿过回路的磁通量为⑩ 回路的总磁通量为⑪ 式中仍如①式所示,由①⑨⑩⑪可得,在时刻t(t>t0)穿过回路的总磁通量为⑫ 在t到的时间间隔内,总磁通量的改变为⑬ 由法拉第电磁感应定律得,回路感应电动势的大小为⑭ 由欧姆定律有⑮ 联立⑦⑧⑬⑭⑮可得 【考点定位】考查了导体切割磁感线运动 【方法技巧】根据法拉第电磁感应定律,结合闭合电路欧姆定律,及电量表达式,从而导出电量的综合表达式,即可求解;根据磁通量的概念,,结合磁场方向,即可求解穿过回路的总磁通量;根据动生电动势与感生电动势公式,求得线圈中的总感应电动势,再依据闭合电路欧姆定律,及安培力表达式,最后依据平衡条件,即可求解水平恒力大小。 10.【2016·江苏卷】(15分)据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v=7.7 km/s绕地球做匀速圆周运动,运动方向与太阳帆板两端M、N的连线垂直,M、N间的距离L=20 m,地磁场的磁感应强度垂直于 35 v、MN所在平面的分量B=1.0×10-5 T,将太阳帆板视为导体. (1)求M、N间感应电动势的大小E; (2)在太阳帆板上将一只“1.5 V,0.3 W”的小灯泡与M、N相连构成闭合电路,不计太阳帆板和导线的电阻,试判断小灯泡能否发光,并说明理由; (3)取地球半径R=6.4×103 km,地球表面的重力加速度g=9.8 m/s2,试估算“天宫一号”距离地球表面的高度h(计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)4×105 m 【考点定位】电磁感应、万有引力 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生。本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面。 11.【2016·全国新课标Ⅰ卷】(14分)如图,两固定的绝缘斜面倾角均为θ,上沿相连。两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平。右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上。已知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g,已知金属棒ab匀速下滑。求 (1)作用在金属棒ab上的安培力的大小; (2)金属棒运动速度的大小。 35 【答案】(1)mg(sin θ–3μcos θ) (2)(sin θ–3μcos θ) 式中,v是ab 棒下滑速度的大小。由欧姆定律得I=⑧ 联立⑤⑥⑦⑧式得v=(sin θ–3μcos θ)⑨ 【考点定位】导体切割磁感线、共点力平衡 【名师点睛】本题是电磁感应与电路、力学相结合的综合题,应用E=BLv、欧姆定律、安培力公式、共点力作用下的平衡即可正确解题。解决本题时,还要特别注意cd 棒的重力沿斜面的分力和滑动摩擦力的影响。 35查看更多