- 2021-04-23 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
陕西省西安中学2020届高三上学期期中考试数学(理)试题
西安中学高2020届高三期中考试 数学(理科)试题 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则( ) A. B. C. D. 2.命题“对任意都有”的否定是( ) A.对任意,都有 B.不存在,使得 C.存在,使得 D.存在,使得 3.在等差数列中,a2=4,a3=6,则a10=( ) A.20 B.22 C.18 D.16 4.下列函数中,既是偶函数又有零点的是( ) A. B. C. D. 5.若,则( ) A. B. C. D.2 6.函数f(x)=2x+3x的零点所在的一个区间是( ) A. B. C. D. 7.已知函数,则=( ) A. B.2 C. D.4 8.若实数满足约束条件,则的最小值是( ) A.2 B.3 C.4 D.5 9.已知,则实数a的取值范围是( ) A. B. C. D. 10.在直角中,,,,点是外接圆上任意一点,则的最大值为( ) A.6 B.8 C.10 D. 12 11.已知定义在上的函数在上有和两个零点,且函数与函数 都是偶函数,则在上的零点至少有( ) 个 A.404 B.406 C.808 D.812 12.定义在R上的函数的导函数为,若对任意实数,都有,且为奇函数,则不等式的解集为( ) A. B. C. D. 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题5分. 13.已知,,若与平行,则 . 14.若不等式恒成立,则实数的取值范围为 . 15.函数的递减区间为 . 16.已知,函数在区间上的最大值是5,则实数a的取值范围是 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 已知向量,,函数的最大值为6. (Ⅰ)求A; (Ⅱ)将函数y=f(x)的图像向左平移 个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图像,求g(x)在上的值域. 18.(本小题满分12分) 在角中,角A,B,C的对边分别是,若. (Ⅰ)求角A的大小; (Ⅱ)若的面积为,,求的周长. 19.(本小题满分12分) 设函数,其中. (Ⅰ)当时,求的极值点; (Ⅱ)若在上为单调函数,求的取值范围. 20.(本小题满分12分) 以椭圆的中心为圆心,以为半径的圆称为该椭圆的“伴随”. 已知椭圆的离心率为,且过点. (Ⅰ)求椭圆及其“伴随”的方程; (Ⅱ)过点作“伴随”的切线交椭圆于,两点,记为坐标原点)的面积为,求的最大值. 21.(本小题满分12分) 已知函数,曲线在点处的切线方程为. (Ⅰ)求的解析式; (Ⅱ)判断方程在内的解的个数,并加以证明. (二)选考题:共10分.请考生在第22,23题中任选一题作答.如果多做,那么按所做的第一题计分. 22.(本小题满分10分)[选修4—4:坐标系与参数方程] 在直角坐标系中,曲线,为参数,,其中 ,在以为极点,轴正半轴为极轴的极坐标系中,曲线:,曲线:. (Ⅰ)求与交点的直角坐标; (Ⅱ)若与相交于点,与相交于点,求的最大值. 23.(本小题满分10分)[选修4—5:不等式选讲] 已知,,.求证: (Ⅰ); (Ⅱ). 西安中学高2020届高三期中考试 数 学(理科)参考答案 一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A D A D A B C B A D C B 二、填空题: 13. 14. 15. 16. 三、解答题: 17.解:(Ⅰ)=Asin xcos x+cos 2x =A =Asin.··········································(4分) 因为A>0,由题意知A=6.················································(5分) (Ⅱ)由(Ⅰ)f(x)=6sin. 将函数y=f(x)的图像向左平移个单位后得到y=6sin=6sin的图像;··········································································(7分) 再将得到图像上各点横坐标缩短为原来的倍,纵坐标不变,得到y=6sin的图像. 因此g(x)=6sin.······························································(9分) 因为x∈,所以4x+∈, 故g(x)在上的值域为[-3,6] .·········································(12分) 18.解:(Ⅰ)由正弦定理得:,························(2分) , ,··········································································(4分) 是的内角, .··············································································(6分)(Ⅱ)的面积为, , 由(Ⅰ)知, ,··············································································(8分)由余弦定理得:,·····(10分) , 得:, 的周长为.·······························································(12分) 19.解:对求导得 ·····························(1分) (Ⅰ)若,由 令,因为,则, ·······(2 分) 所以随x变化而变化的情况为: + 0 - 0 + ↗ 极大值 ↘ 极小值 ↗ 所以,是极大值点,是极小值点.····························(5分) (注:未注明极大、极小值扣1分) (Ⅱ)若为上的单调函数,又,所以当时,即在上恒成立. ···················(6分) (1)当时,,符合题意;···················(8分) (2)当时,抛物线开口向上, 则的充要条件是, 即,所以. 综合(1)(2)知的取值范围是.···································(12分) 20.解:(Ⅰ)椭圆的离心率为, 则, 设椭圆的方程为 ∵椭圆过点,∴, ∴, ∴椭圆的标准方程为,················································( 3 分) 椭圆的“伴随”方程为.···············································(4分) (Ⅱ)由题意知,. ······················································(5分) 易知切线的斜率存在,设切线的方程为 由得 设, 两点的坐标分别为, , 则 , .··················································(7分) 又由与圆相切, 所以,.·············(8分) 所以 ······························································(10分) . 令,则,代入上式得: (当且仅当,即时等号成立) 所以的最大值为1.···············································(12分) 21.解:(Ⅰ)直线的斜率为,过点, ,则,即, ,所以.··············································(4分) (Ⅱ)方程在上有3个解. 证明:令,则, 又,, 所以在上至少有一个零点, 又在上单调递减,故在上只有一个零点.····················(6分) 当时,,故, 所以函数在上无零点.················································(8分) 当时,令,, 所以在上单调递增,,, 所以,使得在上单调递增,在上单调递减. 又,,所以函数在上有2个零点. 综上,方程在上有3个解.··································(12分) 22.解:(Ⅰ)曲线的直角坐标方程为,························(1分) 曲线的直角坐标方程为.·································(2分) 联立,解得,或. 所以与的交点的直角坐标为和.···························(4分) (Ⅱ)曲线的极坐标方程为,其中.····(5分) 因此的极坐标为,的极坐标为,·············(7分) 所以==,·································(9分) 当时,取得最大值,最大值为4. ·······························(10分) 23.证明:(Ⅰ) (当且仅当时等号成立)····(5分) 也可以用柯西不等式直接证明. (Ⅱ) ······················································(7分) ···················································································(9分) (当且仅当时等号成立) 从而.···························································(10分) 也可以用分析法证明.查看更多