- 2021-04-23 发布 |
- 37.5 KB |
- 23页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019中考数学压轴题
2019中考数学压轴题 81.(2017浙江省温州市,第24题,14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE. (1)当∠APB=28°时,求∠B和的度数; (2)求证:AC=AB. (3)在点P的运动过程中. ①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值; ②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比. 【答案】(1)∠B=76°,=56°;(2)证明见解析;(3)①MQ的值为或或;②. 【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°; (2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB; (3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR,MR的值,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值; ②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=1=MG,即可得到CG的值,进而得出S△ACG的值,再根据S△DEG的值,即可得到△ACG和△DEG的面积之比. 【解析】(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°; (2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB; (3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=; Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=; Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠ MPB=,∴PQ=,∴MQ=; Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=; 综上所述,MQ的值为或或; ②△ACG和△DEG的面积之比为. 理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得 CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△AS△DEG =. 点睛:本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用. 考点:圆的综合题;旋转的性质;动点型;分类讨论;压轴题. 82.(2017湖北省咸宁市,第23题,10分)定义: 数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”. 理解: (1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹); (2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,试判断△AEF是否为“智慧三角形”,并说明理由; 运用: (3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标. 【答案】(1)作图见解析;(2)△AEF是“智慧三角形”;(3)P的坐标(﹣,),(,). 【分析】(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解; (2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”; (3)根据“智慧三角形”的定义可得△ OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解. 【解析】(1)如图1所示: (2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”; (3)如图3所示,由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ= =,PM=1×÷3=,由勾股定理可求得OM= =,故点P的坐标(﹣,),(,). 点睛:本题考查了圆的综合题,正方形的性质,勾股定理的应用,勾股定理逆定理的应用,用正方形的边长表示出△AEF的各边的平方,熟练掌握“智慧三角形”的定义是解题的关键. 考点:圆的综合题;新定义;探究型;最值问题;阅读型;压轴题. 83.(2017湖南省湘潭市,第26题,10分)如图,动点M在以O为圆心,AB为直径的半圆弧上运动(点M不与点A、B 及的中点F 重合),连接OM.过点M 作ME⊥AB于点E,以BE为边在半圆同侧作正方形BCDE,过点M作⊙O的切线交射线DC于点N,连接BM、BN. (1)探究:如图一,当动点M在上运动时; ①判断△OEM∽△MDN是否成立?请说明理由; ②设,k是否为定值?若是,求出该定值,若不是,请说明理由; ③设∠MBN=α,α是否为定值?若是,求出该定值,若不是,请说明理由; (2)拓展:如图二,当动点M 在上运动时; 分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由) 【答案】(1)①成立;②k值为定值1;③设∠MBN=α,α为定值45°;(2)不变. 【分析】(1)①由正方形的性质得出BE=BC,∠EBC=∠CDE=∠BCD=∠BED=90°,由切线的性质和直角三角形的性质证出∠EOM=∠DMN,即可得出△OEM∽△MDN; ②作BG⊥MN于G,则BG∥OM,∠BGN=∠BGM=90°,由平行线的性质和等腰三角形的性质得出∠OBM=∠GBM,由AAS证明△BME≌△BMG,得出EM=GM,BE=BG,证出BG=BC,由HL证明Rt△BGN≌Rt△BCN,得出GN=CN,证出EM+NC=GM+NC=MN,即可得出结论; ③由全等三角形的性质得出∠EBM=∠GBM,∠GBN=∠CBN,求出∠MBN=∠EBC=45°即可; (2)(1)中的三个结论保持不变;解法同(1). 【解析】(1)①△OEM∽△MDN成立,理由如下: ∵四边形BCDE是正方形,∴BE=BC,∠EBC=∠CDE=∠BCD=∠BED=90°,∴∠EOM+∠EMO=90°,∵MN是⊙O的切线,∴MN⊥OM,∴∠OMN=90°,∴∠DMN+∠EMO=90°,∴∠EOM=∠DMN,∴△OEM∽△MDN; ②k值为定值1;理由如下: 作BG⊥MN于G,如图一所示: 则BG∥OM,∠BGN=∠BGM=90°,∴∠OMB=∠GBM,∵OB=OM,∴∠OBM=∠OMB,∴∠OBM=∠GBM,在△BME和△BMG中,∵∠OBM=∠GBM,∠BED=∠BGM=90°,BM=BM,∴△BME≌△BMG(AAS),∴EM=GM,BE=BG,∴BG=BC,在Rt△BGN和Rt△BCN中,∵BN=BN,BG=BC,∴Rt△BGN≌Rt△BCN(HL),∴GN=CN,∴EM+NC=GM+NC=MN,∴k===1; ③设∠MBN=α,α为定值45°;理由如下: ∵△BME≌△BMG,Rt△BGN≌Rt△BCN,∴∠EBM=∠GBM,∠GBN=∠CBN,∴∠MBN=∠EBC=45°,即α=45°; (2)(1)中的三个结论保持不变;理由同(1),作BG⊥MN于G,如图二所示. 点睛:本题是圆的综合题目,考查了正方形的性质、切线的性质、全等三角形的判定与性质、直角三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键. 考点:圆的综合题;定值问题;探究型;动点型;压轴题. 84.(2017陕西省,第25题,12分)问题提出 (1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为 ; 问题探究 (2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由. 问题解决 (3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了. 如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m. 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米) 【答案】(1);(2)PQ=;(3)喷灌龙头的射程至少为19.71米. 【分析】(1)构建Rt△AOD中,利用cos∠OAD=cos30°=,可得OA的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可; (3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径: 在Rt△AOD中,由勾股定理解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论. 【解析】(1)如图1,过O作OD⊥AC于D,则AD=AC=×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=∠BAC=×60°=30°,在Rt△AOD中,cos∠OAD=cos30°=,∴OA=6÷=,故答案为:; (2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD的面积平分,∵点O为矩形ABCD的对称中心,∴CQ=AP=3,过P作PM⊥BC于点,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ= ==; (3)如图3,作射线ED交AM于点C.∵AD=DB,ED⊥AB,是劣弧,∴所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r﹣8,AD=AB=12,在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,∴AB•MN=96,×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ADC∽△ANM,∴,∴,∴DC=,∴OD<CD,∴点O在△AMB内部,∴连接MO并延长交于点F,则MF为草坪上的点到M点的最大距离,∵在上任取一点异于点F的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,∴OM===,∴MF=OM+r=+13≈19.71(米). 答:喷灌龙头的射程至少为19.71米. 点睛:本题是圆的综合题,考查了三角形相似的性质和判定、勾股定理、等边三角形的性质及内心的定义、特殊的三角函数值、矩形的性质等知识,明确在特殊的四边形中将面积平分的直线一定过对角线的交点,本题的第三问比较复杂,辅助线的作出是关键,根据三角形的三角关系确定其最大射程为MF. 考点:圆的综合题;最值问题;存在型;阅读型;压轴题. 85.(2017黑龙江省哈尔滨市,第26题,10分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D. (1)如图1,求证:AD=BD; (2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°; (3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值. 【答案】(1)证明见解析;(2)证明见解析;(3). 【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论; (2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论; (3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果. 【解析】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD; (2)证明:如图2,延长BO交⊙O于点T,连接PT.∵BT是⊙O的直径,∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB.又∠ABO=∠APT,∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°; (3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形; AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°,∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴=,∴=,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴=. 点睛:本题主要考查了垂径定理,圆周角定理,全等三角形的判定与性质定理,三角函数的定义等相关知识,作出恰当的辅助线构建全等三角形是解答此题的关键. 考点:圆的综合题;压轴题. 86.(2017山东省莱芜市,第23题,10分)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①. (1)求证:DE是⊙O的切线; (2)若AB=10,AC=6,求BD的长; (3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=,tan∠BAD=,求⊙O的半径. 【答案】(1)证明见解析;(2);(3)4. 【分析】(1)欲证明DE是⊙O的切线,只要证明OD⊥DE; (2)首先证明OD⊥BC,在Rt△BDN中,利用勾股定理计算即可; (3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=x,想办法用x表示线段FH、GH,根据FH+GH=,列出方程即可解决问题; 【解析】(1)证明:如图①中,连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线. (2)如图①中,连接BC,交OD于点N,∵AB是直径,∴∠BCA=90°,∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=AC,∴∠ONB=90°,且ON=3,则BN=4,ND=2,∴BD==. (3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=x,FH=AF•tan∠BAD= x•=x,AH== =,HD=AD﹣AH=4x﹣=,由(1)可知,∠HDG+∠ODA=90°,在Rt△HFA中,∠FAH+∠FHA=90°,∵∠OAD=∠ODA,∠FHA=∠DHG,∴∠DHG=∠HDG,∴GH=GD,过点G作GM⊥HD,交HD于点M,∴MH=MD,∴HM=HD=×=,∵∠FAH+∠AHF=90°,∠MHG+∠HGM=90°,∴∠FAH=∠HGM,在Rt△HGM中,HG===,∵FH+GH=,∴+=,解得x=,∴此圆的半径为×=4. 点睛:本题考查圆综合题、切线的判定、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题. 考点:圆的综合题. 87.(2017黑龙江省大庆市,第27题,9分)如图,四边形ABCD内接于圆O,∠BAD=90°,AC为直径,过点A作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG. (1)求证:AB=CD; (2)求证:CD2=BE•BC; (3)当CG=,BE=时,求CD的长. 【答案】(1)证明见解析;(2)证明见解析;(3). 【分析】(1)根据三个角是直角的四边形是矩形证明四边形ABCD是矩形,可得结论; (2)证明△ABE∽△CBA,列比例式可得结论; (3)根据F是AC的三等分点得:AG=2BG,设BG=x,则AG=2x,代入(2)的结论解出x的值,可得CD的长. 【解析】(1)∵AC为⊙O的直径,∴∠ABC=∠ADC=90°,∵∠BAD=90°,∴四边形ABCD是矩形,∴AB=CD; (2)∵AE为⊙O的切线,∴AE⊥AC,∴∠EAB+∠BAC=90°,∵∠BAC+∠ACB=90°,∴∠EAB=∠ACB,∵∠ABC=90°,∴△ABE∽△CBA,∴,∴AB2=BE•BC,由(1)知:AB=CD,∴CD2=BE•BC; (3)∵F是AC的三等分点,∴AF=2FC,∵FG∥BE,∴△AFG∽△ACB,∴ =2,设BG=x,则AG=2x,∴AB=3x,在Rt△BCG中,CG=,∴BC2=()2﹣x2,BC=,由(2)得:AB2=BE•BC,(3x)2=,4x4+x2﹣3=0,(x2+1)(4x2﹣3)=0,x=±,∵x>0,∴x=,∴CD=AB=3x=. 点睛:本题是圆和四边形的综合题,难度适中,考查了矩形的性质和判定、平行相似的判定、三角形相似的性质、圆周角定理、切线的性质、勾股定理等知识,注意第2和3问都应用了上一问的结论,与方程相结合,熟练掌握一元高次方程的解法. 考点:圆的综合题;压轴题. 88.(2016四川省达州市)如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F. (1)求证:AE•BC=AD•AB; (2)若半圆O的直径为10,sin∠BAC=,求AF的长. 【答案】(1)证明见解析;(2). 【分析】(1)只要证明△EAD∽△ABC即可解决问题. (2)作DM⊥AB于M,利用DM∥AE,得,求出DM、BM即可解决问题. 【解析】(1)∵AB为半圆O的直径,∴∠C=90°,∵OD⊥AC,∴∠CAB+∠AOE=90°,∠ADE=∠C=90°,∵AE是切线,∴OA⊥AE,∴∠E+∠AOE=90°,∴∠E=∠CAB,∴△EAD∽△ABC,∴AE:AB=AD:BC,∴AE•BC=AD•AB. (2)作DM⊥AB于M,∵半圆O的直径为10,sin∠BAC=,∴BC=AB•sin∠BAC=6,∴AC==8,∵OE⊥AC,∴AD=AC=4,OD=BC=3,∵sin∠MAD==,∴DM=,AM===,BM=AB﹣AM=,∵DM∥AE,∴,∴AF=. 考点:相似三角形的判定与性质;勾股定理;切线的性质;锐角三角函数的定义. 89.(2016山西省)请阅读下列材料,并完成相应的任务: 阿基米德折弦定理 阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并成为三大数学王子. 阿拉伯Al﹣Binmi(973﹣1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al﹣Binmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理. 阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG. ∵M是的中点,∴MA=MC. … 任务: (1)请按照上面的证明思路,写出该证明的剩余部分; (2)填空:如图3,已知等边△ABC内接于⊙O,AB=2,D为上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是 . 【答案】(1)证明见解析;(2). 【分析】(1)首先证明△MBA≌△MGC(SAS),进而得出MB=MG,再利用等腰三角形的性质得出BD=GD,即可得出答案; (2)首先证明△ABF≌ACD(SAS),进而得出AF=AD,以及CD+DE=BE,进而求出DE的长即可得出答案. (2)解:如图3,截取BF=CD,连接AF,AD,CD,由题意可得:AB=AC,∠ABF=∠ACD,在△ABF和△ACD中,∵AB=AC,∠ABF=∠ACD,BF=DC,∴△ABF≌ACD(SAS),∴AF=AD,∵AE⊥BD,∴FE=DE,则CD+DE=BE,∵∠ABD=45°,∴BE==,则△BDC的周长是.故答案为:. 考点:三角形的外接圆与外心;等边三角形的性质;阅读型;和差倍分. 90.(2016广东省茂名市)如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A. (1)求证:BC是⊙O的切线; (2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示). 【答案】(1)证明见解析;(2). 【分析】(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE=∠A,易得EF平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O的切线; (2)由在△OBE中,sinB= ,⊙O的半径为r,可求得OB,BE的长,然后由在△BFG中,求得BG,FG的长,则可求得EG的长,易证得△EGH∽△FGE,然后由相似三角形面积比等于相似比的平方,求得答案. 【解析】(1)证明:连接OE,∵在△ABC中,∠C=90°,FG⊥BC,∴∠BGF=∠C=90°,∴FG∥AC,∴∠OFG=∠A,∴∠OFE=∠OFG,∴∠OFE=∠EFG,∵OE=OF,∴∠OFE=∠OEF,∴∠OEF=∠EFG,∴OE∥FG,∴OE⊥BC,∴BC是⊙O的切线; (2)解:∵在Rt△OBE中,sinB=,⊙O的半径为r,∴OB=r,BE=r,∴BF=OB+OF=r,∴FG=BF•sinB=r,∴BG==r,∴EG=BG﹣BE=r,∴S△FGE=EG•FG=,EG:FG=1:2,∵BC是切线,∴∠GEH=∠EFG,∵∠EGH=∠FGE,∴△EGH∽△FGE,∴==,∴S△EHG=S△FGE=. 考点:切线的判定. 91.(2016内蒙古呼和浩特市)如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC. (1)求证:∠FBC=∠FCB; (2)已知FA•FD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长. 【答案】(1)证明见解析;(2). 【分析】(1)由圆内接四边形的性质和邻补角关系证出∠FBC=∠CAD,再由角平分线和对顶角相等得出∠FAB=∠CAD,由圆周角定理得出∠FAB=∠FCB,即可得出结论; (2)由(1)得:∠FBC=∠FCB,由圆周角定理得出∠FAB=∠FBC,由公共角∠BFA=∠BFD,证出△AFB∽△BFD,得出对应边成比例求出BF,得出FD、AD的长,由圆周角定理得出∠BFA=∠BCA=90°,由三角函数求出∠FBA=30°,再由三角函数求出CD的长即可. 【解析】(1)证明:∵四边形AFBC内接于圆,∴∠FBC+∠FAC=180°,∵∠CAD+∠FAC=180°,∴∠FBC=∠CAD,∵AD是△ABC的外角∠EAC的平分线,∴∠EAD=∠CAD,∵∠EAD=∠FAB,∴∠FAB=∠CAD,又∵∠FAB=∠FCB,∴∠FBC=∠FCB; (2)解:由(1)得:∠FBC=∠FCB,又∵∠FCB=∠FAB,∴∠FAB=∠FBC,∵∠BFA=∠BFD,∴△AFB∽△BFD,∴,∴=FA•FD=12,∴BF=,∵FA=2,∴FD=6,AD=4,∵AB为圆的直径,∴∠BFA=∠BCA=90°,∴tan∠FBA===,∴∠FBA=30°,又∵∠FDB=∠FBA=30°,∴CD=AD•cos30°=4×=. 考点:相似三角形的判定与性质;三角形的外接圆与外心. 92.(2016内蒙古巴彦淖尔市)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆. (1)求证:AC是⊙O的切线; (2)过点E作EH⊥AB,垂足为H,求证:CD=HF; (3)若CD=1,EH=3,求BF及AF长. 【答案】(1)证明见解析;(2)证明见解析;(3)BF=10,AF=. 【分析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线; (2)连结DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF. (3)先证得△EHF∽△BEF,根据相似三角形的性质求得BF=10,进而根据直角三角形斜边中线的性质求得OE=5,进一步求得OH,然后解直角三角形即可求得OA,得出AF. 【解析】(1)如图,连接OE. ∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径. ∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线; (2)如图,连结DE. ∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH. ∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE. 在△CDE与△HFE中,∵∠CDE=∠HFE,∠C=∠EHF,EC=EH,∴△CDE≌△HFE(AAS),∴CD=HF. (3)由(2)得CD=HF,又CD=1,∴HF=1,在Rt△HFE中,EF==,∵EF⊥BE,∴∠BEF=90°,∴∠EHF=∠BEF=90°,∵∠EFH=∠BFE,∴△EHF∽△BEF,∴,即,∴BF=10,∴OE=BF=5,OH=5﹣1=4,∴Rt△OHE中,cos∠EOA=,∴Rt△EOA中,cos∠EOA==,∴ =,∴OA=,∴AF=﹣5=. 考点:切线的判定;三角形的外接圆与外心;相似三角形的判定与性质. 93.(2016四川省宜宾市)如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G. (1)求证:直线PE是⊙O的切线; (2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长. 【答案】(1)证明见解析;(2). 【分析】(1)作OH⊥PE,由PO是∠APE的角平分线,得到∠APO=∠EPO,判断出△PAO≌△PHO,得到OH=OA,用“圆心到直线的距离等于半径”来得出直线PE是⊙O的切线; (2)先利用切线的性质和△PBC的周长为4求出PA=2,再用三角函数求出OA,AG,然后用三角形相似,得到EH=2EG,AE=2EH,用勾股定理求出EG,最后用切割线定理即可. 【解析】(1)如图1,作OH⊥PE,∴∠OHP=90°,∵∠PAE=90,∴∠OHP=∠OAP,∵PO是∠APE的角平分线,∴∠APO=∠EPO,在△PAO和△PHO中,∵∠OHP=∠OAP,∠OPH=∠OPA,OP=OP,∴△PAO≌△PHO,∴OH=OA,∵OA是⊙O的半径,∴OH是⊙O的半径,∵OH⊥PE,∴直线PE是⊙O的切线. (2)如图2,连接GH,∵BC,PA,PB是⊙O的切线,∴DB=DA,DC=CH,∵△PBC的周长为4,∴PB+PC+BC=4,∴PB+PC+DB+DC=4,∴PB+AB+PC+CH=4,∴PA+PH=4,∵PA,PH是⊙O的切线,∴PA=PH,∴PA=2,由(1)得,△PAO≌△PHO,∴∠OFA=90°,∴∠EAH+∠AOP=90°,∵∠OAP=90°,∴∠AOP+∠APO=90°,∴∠APO=∠EAH, ∵tan∠EAH=,∴tan∠APO==,∴OA=PA=1,∴AG=2,∵∠AHG=90°,∵tan∠EAH==,∵△EGH∽△EHA,∴== ,∴EH=2EG,AE=2EH,∴AE=4EG,∵AE=EG+AG,∴EG+AG=4EG,∴EG=AG=,∵EH是⊙O的切线,EGA是⊙O的割线,∴=EG×EA=EG×(EG+AG)==,∴EH=. 考点:切线的判定与性质. 94.(2016江西省)如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D. (1)求证:DC=DP; (2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由. 【答案】(1)证明见解析;(2)以A,O,C,F为顶点的四边形是菱形. 【分析】(1)连接BC、OC,利用圆周角定理和切线的性质可得∠B=∠ACD,由PE⊥AB,易得∠APE=∠DPC=∠B,等量代换可得∠DPC=∠ACD,可证得结论; (2)由∠CAB=30°易得△OBC为等边三角形,可得∠AOC=120°,由F是的中点,易得△AOF与△COF均为等边三角形,可得AF=AO=OC=CF,易得以A,O,C,F为顶点的四边形是菱形. 【解析】(1)连接BC、OC,∵AB是⊙O的直径,∴∠OCD=90°,∴∠OCA+∠OCB=90°,∵∠OCA=∠OAC,∠B=∠OCB,∴∠OAC+∠B=90°,∵CD为切线,∴∠OCD=90°,∴∠OCA+∠ACD=90°,∴∠B=∠ACD,∵PE⊥AB,∴∠APE=∠DPC=∠B,∴∠DPC=∠ACD,∴AP=DC; (2)以A,O,C,F为顶点的四边形是菱形.理由如下: ∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形. 考点:切线的性质;垂径定理. 95.(2016江苏省南京市)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG. (1)求证:AB=AC. (2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径. 【答案】(1)证明见解析;(2). 【分析】(1)由切线长定理可知AD=AE,易得∠ADE=∠AED,因为DE∥BC,由平行线的性质得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC; (2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,由△AOD∽△ABN得,得到AD=r,再由△GBD∽△ABN得,列出方程即可解决问题. 【解析】(1)证明:∵AD、AE是⊙O的切线,∴AD=AE,∴∠ADE=∠AED,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠B=∠C,∴AB=AC; (2)解:如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r, ∵四边形DFGE是矩形,∴∠DFG=90°,∴DG是⊙O直径,∵⊙O与AB、AC分别相切于点D、E,∴OD⊥AB,OE⊥AC,∵OD=OE,OE⊥AC,∵OD=OE,∴AN平分∠BAC,∵AB=AC,∴AN⊥BC,BN= BC=6,在RT△ABN中,AN===8,∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°,∵∠OAD=∠BAN,∴△AOD∽△ABN,∴,即,∴AD=r,∴BD=AB﹣AD=10﹣r,∵OD⊥AB,∴∠GDB=∠ANB=90°,∵∠B=∠B,∴△GBD∽△ABN,∴,即,∴r=,∴四边形DFGE是矩形时⊙O的半径为. 考点:切线的性质;矩形的性质. 96.(2016江苏省扬州市)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC. (1)试判断△ABC的形状,并说明理由; (2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=,求⊙O的半径和BF的长. 【答案】(1)△ABC是等腰三角形;(2)BF=,⊙O的半径为2. 【分析】(1)连接OE,根据切线性质得OE⊥DE,与已知中的ED⊥AC得平行,由此得∠1=∠C,再根据同圆的半径相等得∠1=∠B,可得出三角形为等腰三角形; (2)通过作辅助线构建矩形OGDE,再设与半径有关系的边OG=x,通过AB=AC列等量关系式,可求得结论. 【解析】(1)△ABC是等腰三角形,理由是: 如图1,连接OE,∵DE是⊙O的切线,∴OE⊥DE,∵ED⊥AC,∴AC∥OE,∴∠1=∠C,∵OB=OE,∴∠1=∠B,∴∠B=∠C,∴△ABC是等腰三角形; (2)如图2,过点O作OG⊥AC,垂足为G,则得四边形OGDE是矩形,∵△ABC是等腰三角形,∴∠B=∠C=75°,∴∠A=180°﹣75°﹣75°=30°,设OG=x,则OA=OB=OE=2x,AG=x,∴DG=0E=2x,根据AC=AB得:,x=1,∴0E=OB=2,在直角△OEF中,∠EOF=∠A=30°,cos30=,OF==2÷=,∴BF=,⊙O的半径为2. 考点:切线的性质;探究型. 97.(2016湖北省十堰市)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C. (1)求证:∠ACD=∠B; (2)如图2,∠BDC的平分线分别交AC,BC于点E,F; ①求tan∠CFE的值; ②若AC=3,BC=4,求CE的长. 【答案】(1)证明见解析;(2)①1;②. 【分析】(1)利用等角的余角相等即可证明. (2)①只要证明∠CEF=∠CFE即可. ②由△DCA∽△DBC,得,设DC=3k,DB=4k,由=DA•DB,得,由此求出DC,DB,再由△DCE∽△DBF,得,设EC=CF=x,列出方程即可解决问题. 【解析】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B; (2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1; ②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴,设DC=3k,DB=4k,∵=DA•DB,∴,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴,设EC=CF=x,∴,∴x=,∴CE=. 考点:切线的性质;压轴题. 98.(2016湖北省武汉市)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E. (1)求证:AC平分∠DAB; (2)连接BE交AC于点F,若cos∠CAD=,求的值. 【答案】(1)证明见解析;(2). 【分析】(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案; (2)连接BE、BC、OC,BE交AC于F交OC于H,根据cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,根据cos∠CAB==,求出AB、BC,再根据勾股定理求出CH,由此即可解决问题; 【解析】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB; (2)解:连接BE、BC、OC,BE交AC于F交OC于H.∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,∴DC=EH=HB,DE=HC,∵cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,∵cos∠CAB==,∴AB=a,BC=a,在RT△ CHB中,CH==a,∴DE=CH=a,AE==a,∵EF∥CD,∴==. 考点:切线的性质.查看更多