高考理科数学复习练习作业79

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考理科数学复习练习作业79

题组层级快练(七十九)‎ ‎1.已知甲:A1,A2是互斥事件;乙:A1,A2是对立事件,那么(  )‎ A.甲是乙的充分但不必要条件 B.甲是乙的必要但不充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件,也不是乙的必要条件 答案 B 解析 对立事件是一种特殊的互斥事件.‎ ‎2.将一个骰子抛掷一次,设事件A表示向上的一面出现的点数不超过3,事件B表示向上的一面出现的点数不小于4,事件C表示向上的一面出现奇数点,则(  )‎ A.A与B是对立事件 B.A与B是互斥而非对立事件 C.B与C是互斥而非对立事件 D.B与C是对立事件 答案 A 解析 由题意知,事件A包含的基本事件为向上点数为1,2,3,事件B包含的基本事件为向上的点数为4,5,6.事件C包含的点数为1,3,5.A与B是对立事件,故选A.‎ ‎3.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:‎ ‎①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球.中的哪几个(  )‎ A.①②          B.①③‎ C.②③ D.①②③‎ 答案 A 解析 从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A“两球都为白球”发生时,①②不可能发生,且A不发生时,①不一定发生,②不一定发生,故非对立事件,而A发生时,③可以发生,故不是互斥事件.‎ ‎4.(2013·江西)集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是(  )‎ A. B. C. D. 答案 C 解析 从A、B中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所求概率P==,选C.‎ ‎5.4张卡片上分别写有数字1,2,3,4,若从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为(  )‎ A. B. C. D. 答案 C 解析 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P=.‎ ‎6.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:‎ 卡片号码 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ 取到次数 ‎13‎ ‎8‎ ‎5‎ ‎7‎ ‎6‎ ‎13‎ ‎18‎ ‎10‎ ‎11‎ ‎9‎ 则取到号码为奇数的卡片的频率是(  )‎ A.0.53 B.0.5‎ C.0.47 D.0.37‎ 答案 A 解析 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为=0.53,故选A.‎ ‎7.(2016·天津改编)甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则甲获胜的概率和甲不输的概率分别为(  )‎ A., B., C., D., 答案 C 解析 “甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率P=1--=.‎ 设事件A为“甲不输”,则A可看作是“甲胜”与“和棋”这两个互斥事件的并事件,所以P(A)=+=.(或设事件A为“甲不输”,则A可看作是“乙胜”的对立事件.所以P(A)=1-=)‎ ‎8.(2013·陕西文)对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30‎ ‎)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是(  )‎ A.0.09 B.0.20‎ C.0.25 D.0.45‎ 答案 D 解析 由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.‎ ‎9.某城市2016的空气质量状况如下表:‎ 污染指数T ‎30‎ ‎60‎ ‎100‎ ‎110‎ ‎130‎ ‎140‎ 概率P 其中污染指数:当T≤50时,空气质量为优;当50
查看更多