2018-2019学年浙江省“温州十五校联合体”高二下学期期中考试数学试题 Word版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018-2019学年浙江省“温州十五校联合体”高二下学期期中考试数学试题 Word版

绝密★考试结束前 ‎2018-2019学年浙江省“温州十五校联合体”高二下学期期中考试数学试题 考生须知:‎ ‎1.本卷共4 页满分150分,考试时间120分钟;‎ ‎2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。‎ ‎3.所有答案必须写在答题纸上,写在试卷上无效;‎ ‎4.考试结束后,只需上交答题纸。‎ 一、选择题 (本题共10小题,每小题4分,共40分)‎ ‎1.已知集合,,则= (  )‎ ‎ A. B. C. D.‎ ‎2. 已知复数满足,则复数在复平面内对应的点为 (  )‎ ‎ A. B. C. D.‎ ‎3. 下列函数在其定义域上既是奇函数又是增函数的是 (  )‎ ‎ A. B. C. D. ‎ ‎4. 若,则下列结论正确的是 (  ) ‎ ‎ A. B. C. D.‎ ‎5. 已知,为的导函数,则的图像是 (  )‎ ‎6. 在的展开式中,含项的系数是 (  )‎ ‎ A. 165 B. 164 C. 120 D. 119‎ ‎7. 已知是函数,的图象上的两个动点,则当 ‎ ‎ 达到最小时,的值为 (  )‎ ‎ A. B. 2 C. D.‎ ‎8. 现有甲,乙,丙,丁,戊5位同学站成一列,若甲不在右端,且甲与乙不相邻的不同站法共有(  )‎ ‎ A. 60种 B.36种 C.48种 D. 54种 ‎9. 下列命题正确的是 (  ) A. 若,则 B. 若,则 ‎ C. 若,则 D. 若,则 ‎10. 已知函数,若方程有且只有三个不同的实数根,‎ ‎ 则的取值范围是 (  )‎ ‎ A. B.∪ C. D. ∪‎ 二、填空题 (本大题共7小题,多空题每小题6分,单空题每小题4分,共36分)‎ ‎11.已知函数,且,则= ,实数 .‎ ‎12.在探究“杨辉三角”中的一些秘密时,小明同学发现了一组有趣的数:;;;,请根据上面数字的排列规律,写出下一组的规律并计算其结果: .‎ ‎13.若,‎ 则= , = . ‎ ‎14.已知某口袋中装有除颜色外其余完全相同的2个白球和3个黑球,现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球). 记换好后袋中的白球个数为,则的数学期望= ,方差 ‎= .‎ ‎15.已知定义域为的函数的导函数的图象如图所示,且 ,则函数的增区间为 ,‎ 若,则不等式的解集为 . ‎ ‎16. 已知函数在内不单调,则实数的取值范围是 .‎ ‎17. 已知函数,若且,则的取值范围是 . ‎ 三、 解答题 ( 本大题共5小题,共74分。解答应写出文字说明、证明过程或演算步骤)‎ ‎18.(本小题满分14分)‎ 已知函数.‎ ‎(Ⅰ)若为偶函数,求在上的值域;‎ ‎(Ⅱ)若在区间上是减函数,求在上的最大值.‎ ‎19.(本小题满分15分)‎ 已知函数,,设 ‎(Ⅰ)求函数的解析式;‎ ‎(Ⅱ)求不等式的解集. ‎ ‎20.(本小题满分15分)‎ 已知正项数列满足,前项和满足,‎ ‎(Ⅰ)求,,的值 ‎(Ⅱ)猜测数列的通项公式,并用数学归纳法证明. ‎ ‎21.(本小题满分15分)‎ 已知函数,‎ ‎(Ⅰ)若的图像在处的切线与直线垂直,求实数的值及切线方程;‎ ‎(Ⅱ)若过点存在3条直线与曲线相切,求的取值范围 ‎22.(本小题满分15分)‎ 已知函数,为大于0的常数. ‎ ‎(Ⅰ)讨论函数的单调性;‎ ‎(Ⅱ)若函数有两个极值点,且,求证:. ‎ ‎2018学年第二学期“温州十五校联合体”期中考试联考 高二年级数学学科参考答案 ‎ ‎ 一、选择题 (本题共10小题,每小题4分,共40分)‎ ‎1、D 2、A 3、B 4、C 5、A ‎ ‎6、B 7、C 8、D 9、C 10、B ‎ ‎(10.提示: 方程转化为,借助函数图象求解)‎ ‎ ‎ 二、填空题 (本大题共7小题,多空题 每小题6分,单空题 每小题4分,共36分)‎ ‎ ‎ ‎11. ; 2 12. 13. 128; 21 ‎ ‎ 14. ; 15. ; 16.或 17. ‎ ‎ ‎ ‎ ‎ 三、 解答题 ( 本大题共5小题,共74分。解答应写出文字说明、证明过程或演算步骤)‎ ‎ ‎ ‎ 18. 已知函数.‎ ‎(Ⅰ)若为偶函数,求在上的值域;‎ ‎(Ⅱ)若在区间上是减函数,求在上的最大值.‎ 解:(Ⅰ)因为函数为偶函数,故,得.………2分 ‎, 故值域为 ………5分 ‎(Ⅱ)若在区间上是减函数,则 , ………7分 ‎ 时函数递减,时函数递增 ‎ 故当时, ………10分 ‎ ………12分 ‎ ‎ 由于故在上的最大值为. ………14分 ‎ ‎ ‎19. 已知函数,,设 ‎(Ⅰ)求函数的解析式;(Ⅱ)求不等式的解集. ‎ 解:(Ⅰ)当时, 解得 ‎ 当时, 解得 或.‎ ‎ ………5分 ‎(Ⅱ)(1)当时,由,得 ‎ 解得或 ,于是 ………8分 ‎(2)当 或时由,得 ‎①若时,不等式化为, 无解. ‎ ‎②若时,不等式化为,解得 ………14分 由(1),(2)得. ‎ 故不等式的解集为. ………15分 ‎ ‎ ‎20. 已知正项数列满足,前项和满足,‎ ‎(Ⅰ)求,,的值 (Ⅱ)猜测数列的通项公式,并用数学归纳法证明. ‎ 解(Ⅰ)当时, 解得 当时,, ‎ 当时,, ………5分 ‎(Ⅱ)猜想得 ………7分 下面用数学归纳法证明:‎ ‎①当时,,满足。 ………8分 ‎②假设时,结论成立,即,则时 , 将代入化简得 ………14分 故时 结论成立 . ‎ 综合①②可知,. ………15分 ‎ ‎ ‎21. 已知函数,‎ ‎(Ⅰ)若的图像在处的切线与直线垂直,求实数的值及切线方程;‎ ‎(Ⅱ)若过点存在3条直线与曲线相切,求的取值范围 解:(Ⅰ)由得 ‎ 于是在处的切线的斜率为 ………2分 由于切线与直线垂直,所以. 故实数的值为. ………4分 当时,切点为,切线为;‎ 当时,切点为,切线为. ………6分 ‎(Ⅱ)设切点坐标,切线斜率为,则有 ‎ ‎ 切线方程为: ………8分 因为切线过,所以将代入直线方程可得:‎ ‎ ………10分 所以问题等价于方程,令 即直线与有三个不同交点.‎ 由,令解得 ‎ 所以在单调递减,在单调递增 ………13分 ‎ 所以若有三个交点,则 ‎ 所以当时,过点存在3条直线与曲线相切 ………15分 ‎22. 已知函数, 为大于0的常数. ‎ ‎(Ⅰ)讨论函数的单调性;‎ ‎(Ⅱ) 若函数有两个极值点,且,求证:. ‎ 解:(Ⅰ)函数定义域为,求导得,令 ‎①若,则恒成立,此时在上单调递减;‎ ‎②若,则在上有两个实数解,‎ 当时,,此时在上单调递减;当时,,此时在上单调递增;当时,,此时在上单调递减。 ‎ ‎ ………7分 ‎(Ⅱ)由(Ⅰ)知当时有两个极值点,‎ 且满足,,. ………9分 ‎ ‎ ‎ ………11分 构造函数,。则, ………13分 当时,,在上单调递减。‎ 又 。即。………15分
查看更多

相关文章

您可能关注的文档