- 2023-11-30 发布 |
- 37.5 KB |
- 33页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2011年高考数学人教版湖南卷
2011年数学人教版湖南卷 一、选择题 1、(湖南文7)曲线在点处的切线的斜率为( ) A. B. C. D. 2、(湖南文8)已知函数若有则的取值范围为 A. B. C. D. 3、(湖南理6)由直线与曲线所围成的封闭图形的面积为( ) A. B.1 C. D. 4、(湖南理8)设直线与函数的图像分别交于点,则当达到最小时的值为( ) A.1 B. C. D. 5、(湖南理2)设集合则 “”是“”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 二、填空题 6、(湖南文12)已知为奇函数, . 三、解答题 7、(湖南文22)设函数 (I)讨论的单调性; (II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由. 8、(湖南理20)如图6,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。 (Ⅰ)写出的表达式 (Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。 9、(湖南理22) 已知函数() =,g ()=+。 (Ⅰ)求函数h ()=()-g ()的零点个数,并说明理由; (Ⅱ)设数列满足,,证明:存在常数M,使得对于任意的,都有≤ . 四、选择题 10、湖南文6.设双曲线的渐近线方程为则的值为( ) A.4 B.3 C.2 D.1 五、填空题 11、已知圆直线 (1)圆的圆心到直线的距离为 . (2) 圆上任意一点到直线的距离小于2的概率为 . 12、湖南理9.在直角坐标系中,曲线C1的参数方程为(为参数)在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,曲线的方程为,则与的交点个数为 。 13、在直角坐标系中,曲线的参数方程为.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为则与的交点个数为 . 六、解答题 14、(本小题满分13分) 如图7,椭圆的离心率为,轴被曲线 截得的线段长等于 的长半轴长。 (Ⅰ)求,的方程; (Ⅱ)设与轴的交点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E. (i)证明:; (ii)记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?请说明理由。 15、已知平面内一动点到点F(1,0)的距离与点到轴的距离的等等于1. (I)求动点的轨迹的方程; (II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值. 七、选择题 16、(湖南理3)设图1是某几何体的三视图,则该几何体的体积为 3 3 2 正视图 侧视图 俯视图 图1 A. B. C. D. 17、(湖南理5)设双曲线的渐近线方程为,则的值为 A.4 B.3 C.2 D.1 八、解答题 18、(湖南理21) 如图7,椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (Ⅰ)求C1,C2的方程; (Ⅱ)设C2与y轴的焦点为M,过坐标原点O的直线与C2相交于点A,B,直线MA,MB分别与C1相交与D,E. (i)证明:MD⊥ME; (ii)记△MAB,△MDE的面积分别是.问:是否存在直线l,使得?请说明理由。 19、(湖南理19) 如图5,在圆锥中,已知=,⊙O的直径,是的中点,为的中点. (Ⅰ)证明:平面平面; (Ⅱ)求二面角的余弦值。 九、填空题 20、(湖南理13)若执行如图3所示的框图,输入,, 则输出的数等于 。 21、若执行如图2所示的框图,输入则输出的数等于 . 22、若执行如图3所示的框图,输入,则输出的数等于 。 十、选择题 23、湖南文5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110 由 算得, 附表: 0.050 0.010 0.001 k 3.841 6.635 10.828 参照附表,得到的正确结论是 A.有99%以上的把握认为“爱好该项运动与性别有关” B.有99%以上的把握认为“爱好该项运动与性别无关” C.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关” D.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关” 24、(湖南理4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110 由算得,. 0.050 0.010 0.001 3.841 6.635 10.828 参照附表,得到的正确结论是 A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C.有99%以上的把握认为“爱好该项运动与性别有关” D.有99%以上的把握认为“爱好该项运动与性别无关” 十一、填空题 25、湖南文15.已知圆直线 (1)圆的圆心到直线的距离为 . (2)圆上任意一点到直线的距离小于2的概率 为 . 十二、解答题 26、湖南文18.(本小题满分12分) 某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份是我降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160, 220, 140, 160. (Ⅰ)完成如下的频率分布表 近20年六月份降雨量频率分布表 降雨量 70 110 140 160 200 220 频率 (Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率. 十三、选择题 27、湖南文5.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110 由 附表: 0.050 0.010 0.001 3.841 6.635 10.828 参照附表,得到的正确结论是( ) A. 有99%以上的把握认为“爱好该项运动与性别有关” B. 有99%以上的把握认为“爱好该项运动与性别无关” C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 十四、填空题 28、件数分别是10,6,8,5,6,则该组数 29、的展开式中含的项的系数为__________。(结果用数值表示)湖南理 30、如图4, 是以为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形内”,B表示事件“豆子落在扇形(阴影部分)内”,则 (1); (2) 31、对于,将表示为,当时,,当时,为0或1.记为上述表示中为0的个数,(例如,:故)则 (1) (2) 32、(湖南理15)如图4,EFGH 是以O 为圆心,半径为1的圆的内接正方形。将一颗豆子随机地扔到该图内,用A表示事件“豆子落在正方形EFGH内”, B表示事 件“豆子落在扇形OHE(阴影部分)内”,则 (1)P(A)= _____________; (2)P(B|A)= . 33、给定,设函数满足:对于任意大于的正整数, (1)设,则其中一个函数在处的函数值为 ; (2)设,且当时,,则不同的函数的个数为 。 34、江苏从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 35、.某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差. 十五、解答题 36、(湖南理18)某商店试销某种商品20天,获得如下数据: 日销售量(件) 0 1 2 3 频数 1 5 9 5 试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。 (Ⅰ)求当天商品不进货的概率; (Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期型。 37、(本题满分12分) 某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5;已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (I)完成如下的频率分布表: 近20年六月份降雨量频率分布表 降雨量 70 110 140 160 200 220 频率 (II)假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率. 38、附加:23.(本小题满分10分) 设整数,是平面直角坐标系中的点,其中,. (1)记为满足的点的个数,求; (2)记为满足是整数的点的个数,求. 39、某商店试销某种商品20天,获得如下数据: 日销售量(件) 0 1 2 3 频数 1 5 9 5 试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。 (Ⅰ)求当天商品不进货的概率; (Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。 40、湖南理18.(本小题满分12分) 某商店试销某种商品20天,获得如下数据: 日销售量(件) 0 1 2 3 频数 1 5 9 5 试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。 (Ⅰ)求当天商品不进货的概率; (Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期型。 41、湖南理15.如图4,EFGH 是以O 为圆心,半径为1的圆的内接正方形。将一颗豆子随机地扔到该图内,用A表示事件“豆子落在正方形EFGH内”, B表示事件“豆子落在扇形OHE(阴影部分)内”,则 (1)P(A)= _____________; (2)P(B|A)= . 42、湖南理4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计 60 50 110 由算得,. 0.050 0.010 0.001 3.841 6.635 10.828 参照附表,得到的正确结论是 A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” C.有99%以上的把握认为“爱好该项运动与性别有关” D.有99%以上的把握认为“爱好该项运动与性别无关” 43、(湖南理17) 在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC. (Ⅰ)求角C的大小; (Ⅱ)求sinA-cos(B+)的最大值,并求取得最大值时角A、B的大小。 44、已知函数() =,g ()=+。 (Ⅰ)求函数h ()=()-g ()的零点个数,并说明理由; (Ⅱ)设数列满足,,证明:存在常数M,使得对于任意的,都有≤ . 45、如图6,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。 (Ⅰ)写出的表达式 (Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。 46、设函数 (I)讨论的单调性; (II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由. 47、如图6,长方体物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。 (Ⅰ)写出y的表达式 (Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少。 以下是答案 一、选择题 1、B 【解析】,所以 。 2、B 【解析】由题可知,,若有则,即,解得。 3、D 【解析】由定积分知识可得,故选D。 4、D 【解析】由题,不妨令,则,令解得,因时,,当时,,所以当时,达到最小。即。 5、A 二、填空题 6、6 【解析】,又为奇函数,所以 。 三、解答题 7、解析:(I)的定义域为 令 当故上单调递增. 当的两根都小于0,在上,,故上单调递增. 当的两根为, 当时, ;当时, ;当时, ,故分别在上单调递增,在上单调递减. (II)由(I)知,. 因为,所以 又由(I)知,.于是 若存在,使得则.即.亦即 [来源: ] 再由(I)知,函数在上单调递增,而,所以这与式矛盾.故不存在,使得 8、解析:(I)由题意知,E移动时单位时间内的淋雨量为, 故. (II)由(I)知,当时, 当时, 故。 (1)当时,是关于的减函数.故当时,。 (2) 当时,在上,是关于的减函数;在上,是关于的增函数;故当时,。 9、解析:(I)由知,,而,且,则为的一个零点,且在内有零点,因此至少有两个零点 解法1:,记,则。 当时,,因此在上单调递增,则在内至多只有一个零点。又因为,则在内有零点,所以在内有且只有一个零点。记此零点为,则当时,;当时,; 所以, 当时,单调递减,而,则在内无零点; 当时,单调递增,则在内至多只有一个零点; 从而在内至多只有一个零点。综上所述,有且只有两个零点。 解法2:,记,则。 当时,,因此在上单调递增,则在内至多只有一个零点。因此在内也至多只有一个零点, 综上所述,有且只有两个零点。 (II)记的正零点为,即。 (1)当时,由,即.而,因此,由此猜测:。下面用数学归纳法证明:[来源: ] ①当时,显然成立; ②假设当时,有成立,则当时,由 知,,因此,当时,成立。 故对任意的,成立。 (2)当时,由(1)知,在上单调递增。则,即。从而,即,由此猜测:。下面用数学归纳法证明: ①当时,显然成立; ②假设当时,有成立,则当时,由 知,,因此,当时,成立。 故对任意的,成立。 综上所述,存在常数,使得对于任意的,都有. 四、选择题 10、C 解析:由双曲线方程可知渐近线方程为,故可知。 五、填空题 11、5,解析:(1)由点到直线的距离公式可得; (2)由(1)可知圆心到直线的距离为5,要使圆上点到直线的距离小于2,即与圆相交所得劣弧上,由半径为,圆心到直线的距离为3可知劣弧所对圆心角为,故所求概率为 . 12、2 解析:曲线,,由圆心到直线的距离,故与的交点个数为2. 13、2 解析:曲线,曲线,联立方程消得,易得,故有2个交点。 六、解答题 14、解析:(I)由题意知,从而,又,解得。 故的方程分别为。 (II)(i)由题意知,直线的斜率存在,设为,则直线的方程为. 由得, 设,则是上述方程的两个实根,于是。 又点的坐标为,所以 故,即。 (ii)设直线的斜率为,则直线的方程为,由解得或,则点的坐标为,又直线的斜率为 ,同理可得点B的坐标为.于是 由得,解得或, 则点的坐标为;又直线的斜率为,同理可得点的坐标为 于是 因此 由题意知,解得 或。 又由点的坐标可知,,所以 故满足条件的直线存在,且有两条,其方程分别为和。 15、(I)设动点的坐标为,由题意为 化简得当、 所以动点P的轨迹C的方程为 (II)由题意知,直线的斜率存在且不为0,设为,则的方程为. 由,得 设则是上述方程的两个实根,于是 . 因为,所以的斜率为.设则同理可得: 故 当且仅当即时,取最小值16. 七、选择题 16、B 17、C 八、解答题 18、解 :(Ⅰ)由题意知 故C1,C2的方程分别为 (Ⅱ)(i)由题意知,直线l的斜率存在,设为k,则直线l的方程为. 由得 . 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MA⊥MB,即MD⊥ME. (ii)设直线MA的斜率为k1,则直线MA的方程为解得 则点A的坐标为. 又直线MB的斜率为, 同理可得点B的坐标为 于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为 于是. 因此 由题意知, 又由点A、B的坐标可知, 故满足条件的直线l存在,且有两条,其方程分别为 19、解法1:连结OC,因为 又底面⊙O,AC底面⊙O,所以, 因为OD,PO是平面POD内的两条相交直线,所以平面POD, 而平面PAC,所以平面POD平面PAC。 (II)在平面POD中,过O作于H,由(I)知,平面 所以平面PAC,又面PAC,所以 在平面PAO中,过O作于G, 连接HG, 则有平面OGH, 从而,故为二面角B—PA—C的平面角。 在 在 在 在 所以 故二面角B—PA—C的余弦值为 解法2:(I)如图所示,以O为坐标原点,OB、OC、OP所在直线分别为x轴、y轴,z轴建立空间直角坐标系,则 , 设是平面POD的一个法向量, 则由,得 所以 设是平面PAC的一个法向量, 则由, 得 所以 得。 因为 所以从而平面平面PAC。 (II)因为y轴平面PAB,所以平面PAB的一个法向量为 由(I)知,平面PAC的一个法向量为 设向量的夹角为,则 由图可知,二面角B—PA—C的平面角与相等, 所以二面角B—PA—C的余弦值为 九、填空题 20、 21、答案: 解析:由框图功能可知,输出的数等于 。 22、答案: 解析:由框图的算法功能可知,输出的数为三个数的方差,则 十、选择题 23、A 24、C 十一、填空题 25、(1)5(2) 十二、解答题 26、(本题满分12分) 解:(I)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为 降雨量 70 110 140 160 200 220 频率 (II)P(“发电量低于490万千瓦时或超过530万千瓦时”) 故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为. 十三、选择题 27、答案:A 解析:由,而,故由独立性检验的意义可知选A. 十四、填空题 28、答案:40或60(只填一个也正确) 解析:有区间长度为80,可以将其等分8段,利用分数法选取试点: ,,由对称性可知,第二次试点可以是40或60。 29、17 30、(1); (2) 解析:(1)由几何概型概率计算公式可得; (2)由条件概率的计算公式可得 31、(1)2;(2) 解析:(1)因,故; (2)在2进制的位数中,没有0的有1个,有1个0的有个,有2个0的有 个,……有个0的有个,……有个0的有个。故对所有2进制为位数的数,在所求式中的的和为: 。 又恰为2进制的最大7位数,所以。 32、(1) 33、(1),(2)16 解析:(1)由题可知,而时,则,故只须,故。 (2)由题可知,则,而时,即,即,,由乘法原理可知,不同的函数的个数为。 34、答案: 解析:从1,2,3,4这四个数中一次随机取两个数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种. 其中符合条件的有2种,所以概率为.也可以由得到. 本题主要考查随机事件与概率,古典概型的概率计算,互斥事件及其发生的概率.容易题. 35、答案:. 解析:五个数的平均数是7,方差为 还可以先把这组数都减去6再求方差,. 本题主要考查总体分布的估计,总体特征数的估计,平均数方差的计算,考查数据处理能力,容易题. 十五、解答题 36、解(I)(“当天商品不进货”)(“当天商品销售量为0件”)(“当天商品销售量为1 件”) (Ⅱ)由题意知,的可能取值为2,3. (“当天商品销售量为1件”) (“当天商品销售量为0件”)(“当天商品销售量为2件”)(“当天商品销售量为3件”) 故的分布列为 2 3 的数学期望为 37、解:(I)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为 降雨量 70 110 140 160 200 220 频率 (II) 故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为. 38、解:(1)点P的坐标满足条件: (2)设为正整数,记为满足题设条件以及的点P的个数,只要讨论的情形,由知 设 所以 将代入上式,化简得 所以 39、解析:(I)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量1件”)=。 (II)由题意知,的可能取值为2,3. ; 故的分布列为 2 3 的数学期望为。 40、解(I)(“当天商品不进货”)(“当天商品销售量为0件”)(“当天商品销售量为1件”) (Ⅱ)由题意知,的可能取值为2,3. (“当天商品销售量为1件”) (“当天商品销售量为0件”)(“当天商品销售量为2件”)(“当天商品销售量为3件”) 故的分布列为 2 3 的数学期望为 41、(1) 42、C 43、解析:(I)由正弦定理得 因为所以 (II)由(I)知于是 取最大值2. 综上所述,的最大值为2,此时 44、解析:(I)由知,,而,且 ,则为的一个零点,且在内有零点,因此至少有两个零点 解法1:,记,则。 当时,,因此在上单调递增,则在内至多只有一个零点。又因为,则在内有零点,所以在内有且只有一个零点。记此零点为,则当时,;当时,; 所以, 当时,单调递减,而,则在内无零点; 当时,单调递增,则在内至多只有一个零点; 从而在内至多只有一个零点。综上所述,有且只有两个零点。 解法2:,记,则。 当时,,因此在上单调递增,则在内至多只有一个零点。因此在内也至多只有一个零点, 综上所述,有且只有两个零点。 (II)记的正零点为,即。 (1)当时,由,即.而,因此,由此猜测:。下面用数学归纳法证明: ①当时,显然成立; ②假设当时,有成立,则当时,由 知,,因此,当时,成立。 故对任意的,成立。 (2)当时,由(1)知,在上单调递增。则,即 。从而,即,由此猜测:。下面用数学归纳法证明: ①当时,显然成立; ②假设当时,有成立,则当时,由 知,,因此,当时,成立。 故对任意的,成立。 综上所述,存在常数,使得对于任意的,都有. 45、解析:(I)由题意知,E移动时单位时间内的淋雨量为, 故. (II)由(I)知,当时, 当时, 故。 (1)当时,是关于的减函数.故当时,。 (2) 当时,在上,是关于的减函数;在上,是关于的增函数;故当时,。 46、解析:(I)的定义域为 令 (1) 当故上单调递增. (2) 当的两根都小于0,在上,,故上单调递增. (3) 当的两根为, 当时, ;当时, ;当时, ,故分别在上单调递增,在上单调递减. (II)由(I)知,. 因为,所以 又由(I)知,.于是 若存在,使得则.即.亦即 再由(I)知,函数在上单调递增,而,所以这与式矛盾.故不存在,使得 47、解:(I)由题意知,E移动时单位时间内的淋雨量为, 故, (II)由(I)知 当时, 当 故 (1)当时,y是关于v的减函数, 故当 (2)当时,在上,y是关于v的减函数, 在上,y是关于v的增函数, 故当查看更多