2012高考试题分类汇编:导数
2012高考试题分类汇编:导数
一、选择题
1、【2012高考浙江文10】设a>0,b>0,e是自然对数的底数
A. 若ea+2a=eb+3b,则a>b
B. 若ea+2a=eb+3b,则a<b
C. 若ea-2a=eb-3b,则a>b
D. 若ea-2a=eb-3b,则a<b
2、【2012高考陕西文9】设函数f(x)=+lnx 则 ( )
A.x=为f(x)的极大值点 B.x=为f(x)的极小值点
C.x=2为 f(x)的极大值点 D.x=2为 f(x)的极小值点
3、【2012高考辽宁文8】函数y=x2㏑x的单调递减区间为
(A)(1,1] (B)(0,1] (C.)[1,+∞) (D)(0,+∞)
4、【2102高考福建文12】已知f(x)=x³-6x²+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.
其中正确结论的序号是
A.①③ B.①④ C.②③ D.②④
5、【2012高考辽宁文12】已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为
(A) 1 (B) 3 (C) 4 (D) 8
6、【2012高考重庆文8】设函数在上可导,其导函数,且函数在
处取得极小值,则函数的图象可能是
二、填空题
7、【2012高考新课标文13】曲线y=x(3lnx+1)在点处的切线方程为________
8、【2012高考上海文13】已知函数的图像是折线段,其中、、,函数()的图像与轴围成的图形的面积为
三、解答题
9、【2012高考四川文22】
已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。
(Ⅰ)用和表示;
(Ⅱ)求对所有都有成立的的最小值;
(Ⅲ)当时,比较与
的大小,并说明理由。
10、【2102高考北京文18】
已知函数f(x)=ax2+1(a>0),g(x)=x3+bx。
若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围。
11、【2012高考江苏18】若函数在处取得极大值或极小值,则称为函数的极值点。
已知是实数,1和是函数的两个极值点.
(1)求和的值;
(2)设函数的导函数,求的极值点;
(3)设,其中,求函数的零点个数.
12、【2012高考天津文科20】
已知函数,x其中a>0.
(I)求函数的单调区间;
(II)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(III)当a=1时,设函数在区间上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间上的最小值。
13、【2102高考福建文22】
已知函数且在上的最大值为,
(1)求函数f(x)的解析式;
(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。
14、【2012高考陕西文21】
设函数
(1)设,,证明:在区间内存在唯一的零点;
(2)设n为偶数,,,求b+3c的最小值和最大值;
(3)设,若对任意,有,求的取值范围;
15、【2012高考湖南文22】
已知函数f(x)=ex-ax,其中a>0.[@#中国^教育出版&网~]
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;[z
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1
0时,(x-k) f´(x)+x+1>0,求k的最大值
17、【2012高考重庆文17】已知函数在处取得极值为
(1)求a、b的值;(2)若有极大值28,求在上的最大值.
18、【2012高考湖北文22】
设函数,n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.
(1)求a,b的值;
(2)求函数f(x)的最大值
(3)证明:f(x)< .
19、【2012高考安徽文17】
设定义在(0,+)上的函数
(Ⅰ)求的最小值;
(Ⅱ)若曲线在点处的切线方程为,求的值。
20、【2012高考江西文21】
已知函数f(x)=(ax2+bx+c)ex在上单调递减且满足f(0)=1,f(1)=0.
(1)求a的取值范围;
(2)设g(x)= f(-x)- f′(x),求g(x)在上的最大值和最小值。
21、【2012高考辽宁文21】
设,证明:
(Ⅰ)当x﹥1时, ﹤ ( )
(Ⅱ)当时,
22、【2012高考浙江文21】已知a∈R,函数
(1)求f(x)的单调区间
(2)证明:当0≤x≤1时,f(x)+ >0.
23、【2012高考全国文21】
已知函数
(Ⅰ)讨论的单调性;
(Ⅱ)设有两个极值点,若过两点,的直线与轴的交点在曲线上,求的值。
24、【2012高考山东文22】
已知函数为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.
(Ⅰ)求k的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中为的导函数.证明:对任意.
25、【2012高考广东文21】
设,集合,,.
(1)求集合(用区间表示)
(2)求函数在内的极值点.
以下是答案
一、选择题
1、 A
2、 D
3、 B
4、 C
5、 C
6、 C
二、填空题
7、
8、 。
三、解答题
9、
10、
11、 解:(1)由,得。
∵1和是函数的两个极值点,
∴ ,,解得。
(2)∵ 由(1)得, ,
∴,解得。
∵当时,;当时,,
∴是的极值点。
∵当或时,,∴ 不是的极值点。
∴的极值点是-2。
(3)令,则。
先讨论关于 的方程 根的情况:
当时,由(2 )可知,的两个不同的根为I 和一2 ,注意到是奇函数,∴的两个不同的根为一和2。
当时,∵, ,
∴一2 , -1,1 ,2 都不是的根。
由(1)知。
① 当时, ,于是是单调增函数,从而。
此时在无实根。
② 当时.,于是是单调增函数。
又∵,,的图象不间断,
∴ 在(1 , 2 )内有唯一实根。
同理,在(一2 ,一I )内有唯一实根。
③ 当时,,于是是单调减两数。
又∵, ,的图象不间断,
∴在(一1,1 )内有唯一实根。
因此,当时,有两个不同的根满足;当 时
有三个不同的根,满足。
现考虑函数的零点:
( i )当时,有两个根,满足。
而有三个不同的根,有两个不同的根,故有5 个零点。
( 11 )当时,有三个不同的根,满足。
而有三个不同的根,故有9 个零点。
综上所述,当时,函数有5 个零点;当时,函数有9 个零点。
【考点】函数的概念和性质,导数的应用。
【解析】(1)求出的导数,根据1和是函数的两个极值点代入列方程组求解即可。
(2)由(1)得,,求出,令,求解讨论即可。
(3)比较复杂,先分和讨论关于 的方程 根的情况;再考虑函数的零点。
12、
13、
14、
15、 解:令.
当时单调递减;当时单调递增,故当时,取最小值
于是对一切恒成立,当且仅当
. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,
令则
令,则.
当时,单调递减;当时,单调递增.
故当,即
从而,又
所以
因为函数在区间上的图像是连续不断的一条曲线,所以存在
使即成立.
【解析】
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
16、
17、 【解析】(Ⅰ)因 故 由于 在点 处取得极值
故有即 ,化简得解得
(Ⅱ)由(Ⅰ)知 ,
令 ,得当时,故在上为增函数;
当 时, 故在 上为减函数
当 时 ,故在 上为增函数。
由此可知 在 处取得极大值, 在 处取得极小值由题设条件知 得此时,因此 上的最小值为
18、
19、 【解析】(I)(方法一),
当且仅当时,的最小值为。
(II)由题意得:, ①
, ②
由①②得:。
20、
21、
22、 【解析】(1)由题意得,
当时,恒成立,此时的单调递增区间为.
当时,,此时函数的单调递增区间为.
(2)由于,当时,.
当时,.
设,则.
则有
0
1
-
0
+
1
减
极小值
增
1
所以.
当时,.
故.
23、
24、 (I),
由已知,,∴.
(II)由(I)知,.
设,则,即在上是减函数,
由知,当时,从而,
当时,从而.
综上可知,的单调递增区间是,单调递减区间是.
(III)由(II)可知,当时,≤0<1+,故只需证明在时成立.
当时,>1,且,∴.
设,,则,
当时,,当时,,
所以当时,取得最大值.
所以.
综上,对任意,.
25、【解析】(1)令,
。
① 当时,,
方程的两个根分别为,,
所以的解集为。
因为,所以。
② 当时,,则恒成立,所以,
综上所述,当时,;
当时,。
(2),
令,得或。
① 当时,由(1)知,
因为,,
所以,
所以随的变化情况如下表:
0
↗
极大值
↘
↗
所以的极大值点为,没有极小值点。
② 当时,由(1)知,
所以随的变化情况如下表:
0
0
↗
极大值
↘
极小值
↗
所以的极大值点为,极小值点为。
综上所述,当时,有一个极大值点,没有极小值点;
当时,有一个极大值点,一个极小值点。