- 2021-06-04 发布 |
- 37.5 KB |
- 18页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2019届一轮复习人教B版(文)第1章第2讲命题及其关系、充分条件与必要条件学案
第二节命题及其关系、充分条件与必要条件 1.命题的概念 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题. 2.四种命题及其关系 (1)四种命题间的相互关系 (2)四种命题的真假关系 ①两个命题互为逆否命题,它们有相同的真假性; ②两个命题为互逆命题或互否命题,它们的真假性没有关系. 3.充要条件 充分条件与必要条件的定义 从集合角度理解 若p⇒q,则p是q的充分条件,q是p的必要条件 p成立的对象的集合为A,q成立的对象的集合为B p是q的充分不必要条件 p⇒q且qp A是B的真子集 集合与充要条件 的关系 p是q的必要不充分条件 p q且q⇒p B是A的真子集 p是q的充要条件 p⇔q AB p是q的既不充分也不必要条件 p q且qp A,B互不包含 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)“x2+2x-8<0”是命题.( ) (2)一个命题非真即假.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)命题“若p,则q”的否命题是“若p,则綈q”.( ) (5)若p是q成立的充分条件,则q是p成立的必要条件.( ) 答案:(1)× (2)√ (3)√ (4)× (5)√ 2.命题“若a>b,则a+c>b+c”的否命题是( ) A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤b C.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c 解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”. 3.在△ABC中,“A>B”是“sin A>sin B”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选C 由正弦定理知==2R(R为△ABC外接圆半径).若sin A>sin B,则>,即a>b,所以A>B;若A>B,则a>b,所以2Rsin A>2Rsin B,即sin A>sin B,所以“A>B”是“sin A>sin B”成立的充要条件. 4.(2018·唐山一模)若x∈R,则“x>1”是“<1”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选A 当x>1时,<1成立,而当<1时,x>1或x<0,所以“x>1”是“<1”的充分不必要条件,选A. 5.“若a0,所以两边同除以c2,得a1,若x>0,则ax>1”的否命题为( ) A.已知00,则ax>1 B.已知a>1,若x≤0,则ax>1 C.已知a>1,若x≤0,则ax≤1 D.已知01”是大前提,在四种命题中不能改变;“x>0”是条件,“ax>1”是结论.由于命题“若p,则q”的否命题为“若綈p,则綈q”,故该命题的否命题为“已知a>1,若x≤0,则ax≤1”.故选C. [怎样快解·准解] 1.判断命题真假的2种方法 (1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(如第2题逆命题的真假判断) (2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.(如第2题原命题的真假判断) 2.谨防3类失误 (1)如果原命题是“若p,则q”,则否命题是“若綈p,则綈q”,而命题的否定是“若p,则綈q”,即否命题是对原命题的条件和结论同时否定,命题的否定仅仅否定原命题的结论(条件不变). (2)对于不是“若p,则q”形式的命题,需先改写.(如第1题) (3)当命题有大前提时,写其他三种命题时需保留大前提.(如第3题) 充分条件、必要条件以其独特的表达形式成为高考命题的热点.高考主要考查充分条件、必要条件的判断,常以选择题的形式出现,难度不大,属于基础题.,充分条件、必要条件作为一个重要载体,考查的数学知识面较广,几乎涉及数学知识各个方面. [典题领悟] 1.(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:选A ∵m=λn,∴m·n=λn·n=λ|n|2. ∴当λ<0,n≠0时,m·n<0. 反之,由m·n=|m||n|cos〈m,n〉<0⇔cos〈m,n〉<0⇔〈m,n〉∈,当〈m,n〉∈时,m,n不共线. 故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件. 2.(2017·天津高考)设x∈R,则“2-x≥0”是“|x-1|≤1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选B 由2-x≥0,得x≤2, 由|x-1|≤1,得0≤x≤2. ∵0≤x≤2⇒x≤2,x≤2⇒/ 0≤x≤2, 故“2-x≥0”是“|x-1|≤1”的必要而不充分条件. 3.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选A 因为p:x+y≠-2,q:x≠-1,或y≠-1, 所以綈p:x+y=-2,綈q:x=-1,且y=-1, 因为綈q⇒綈p但綈p綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件. 4.(2018·江西鹰潭中学月考)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要不充分条件是( ) A.x<0 B.x<0或x>4 C.|x-1|>1 D.|x-2|>3 解析:选C 依题意,f(x)>0⇔x2-4x>0⇔x<0或x>4.又|x-1|>1⇔x-1<-1或x-1>1,即x<0或x>2,而{x|x<0或x>4}{x|x<0或x>2},因此选C. [解题师说] 1.熟记判断充分、必要条件的3种方法 方法 解读 适合题型 定义法 第一步,分清条件和结论:分清谁是条件,谁是结论;第二步,找推式:判断“p⇒q”及“q⇒p”的真假;第三步,下结论:根据推式及定义下结论 定义法是判断充分、必要条件最根本、最适用的方法.(如典题领悟第1题) 等价法 利用p⇒q与綈q⇒綈p;q⇒p与綈p⇒綈q;p⇔q与綈q⇔綈p的等价关系 适用于“直接正面判断不方便”的情况,可将命题转化为另一个等价的又便于判断真假的命题,再去判断.常用的是逆否等价法.(如典题领悟第3题) 集合法 记条件p,q对应的集合分别为A,B.若AB,则p是q的充分不必要条件;若AB,则p是q的必要不充分条件;若A=B,则p是q的充要条件 适用于“当所要判断的命题与方程的根、不等式的解集以及集合有关,或所描述的对象可以用集合表示时”的情况.(如典题领悟第2题及第4题) 2.把握探求某结论成立的充分、必要条件的3个方面 (1)准确化简条件,也就是求出每个条件对应的充要条件; (2)注意问题的形式,看清“p是q的……”还是“p的……是q”,如果是第二种形式,要先转化为第一种形式,再判断; (3)灵活利用各种方法判断两个条件之间的关系,充分、必要条件的判断常通过“⇒”来进行,即转化为两个命题关系的判断,当较难判断时,可借助两个集合之间的关系来判断. [冲关演练] 1.(2018·安徽两校阶段性测试)设a∈R,则“a=4”是“直线l1:ax+8y-8=0与直线l2:2x+ay-a=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选D ∵当a≠0时,==⇒直线l1与直线l2重合,∴无论a取何值,直线l1与直线l2均不可能平行,当a=4时,l1与l2重合.故选D. 2.对于直线m,n和平面α,β,m⊥α成立的一个充分条件是( ) A.m⊥n,n∥α B.m∥β,β⊥α C.m⊥β,n⊥β,n⊥α D.m⊥n,n⊥β,β⊥α 解析:选C 对于选项C,因为m⊥β,n⊥β,所以m∥n,又n⊥α,所以m⊥α,故选C. 3.(2018·湖南湘中名校联考)“log2(2x-3)<1”是“4x>8”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:选A 由log2(2x-3)<1⇒0<2x-3<2⇒查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档