- 2021-06-04 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学复习练习试题4_6正弦定理和余弦定理
§4.6 正弦定理和余弦定理 一、填空题(本大题共9小题,每小题6分,共54分) 1.△ABC中,若sin A=2sin B,AC=2,则BC=________. 2.在△ABC中,A=60°,a=4,b=4,则B=________. 3.(2010·无锡期末)在△ABC中,如果sin A=sin C,B=30°,那么角A=________. 4.△ABC中,若a4+b4+c4=2c2(a2+b2),则角C的度数是____________. 5.(2010·淮阴模拟)在△ABC中,已知B=45°,c=2,b=,则A=____________. 6.(2010·山东)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,sin B+cos B=,则角A的大小为________. 7.在△ABC中,角A、B、C所对的边分别为a、b、c,若(b-c)cos A=acos C,则cos A=________. 8.在△ABC中,C=60°,a,b,c分别为A,B,C的对边,则+=________. 9.(2010·连云港一模)在△ABC中,角A,B,C所对的边分别为a,b,c,若其面积S=(b2+c2-a2),则A=________. 二、解答题(本大题共3小题,共46分) 10.(14分)(2010·北京宣武区期末)已知△ABC的三个内角A,B,C所对的边分别为a,b,c,A是锐角,且b=2a·sin B. (1)求A; (2)若a=7,△ABC的面积为10,求b2+c2的值. 11.(16分)在△ABC中,若=,试判断△ABC的形状. 12.(16分)在△ABC中,A,B为锐角,角A,B,C所对应的边分别为a,b,c,且cos 2A=,sin B=. (1)求A+B的值; (2)若a-b=-1,求a,b,c的值. 答案 1.4 2.45° 3.120° 4.45°或135° 5.75°或15° 6. 7. 8.1 9. 10.解 (1)∵b=2a·sin B,由正弦定理知 sin B=2sin A·sin B. ∵B是三角形的内角,∴sin B>0,从而有sin A=, ∴A=60°或120°,∵A是锐角,∴A=60°. (2)∵10=bcsin ,∴bc=40, 又72=b2+c2-2bccos ,∴b2+c2=89. 11.解 由已知===, 所以=或=0.即C=90°或=. 方法一 利用正弦定理边化角. 由正弦定理,得=,所以=, 即sin Ccos C=sin Bcos B,即sin 2C=sin 2B. 因为B、C均为△ABC的内角, 所以2C=2B或2C+2B=180°, 所以B=C或B+C=90°, 所以△ABC为等腰三角形或直角三角形. 方法二 由余弦定理,得=, 即(a2+b2-c2)c2=b2(a2+c2-b2), 所以(b2-c2)(a2-b2-c2)=0, 所以b2=c2或a2-b2-c2=0, 即b=c或a2=b2+c2. 所以△ABC为等腰三角形或直角三角形. 综上:△ABC为等腰三角形或直角三角形(分为A或C为直角). 12.解 (1)∵A、B为锐角,且sin B=, ∴cos B==. 又cos 2A=1-2sin2A=, ∴sin A=,cos A==. ∴cos(A+B)=cos Acos B-sin Asin B =×-×=. 又∵0查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档